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Abstract

Mobility-as-a-Service (MaaS) systems such as ride sharing services have expanded very quickly over

the past years. However, the popularity of MaaS systems make them increasingly vulnerable to Denial-

of-Service (DOS) attacks, in which attackers attempt to disrupt the system to make it unavailable to the

customers. Such attacks have already occurred: Uber and Lyft claiming to have canceled thousands

of rides between each other [10], [23], and hackers suggesting how to control a fleet of 471,000

internet-connected vehicles [17]. Such attacks have real-world physical consequences. Expanding on

an established queuing-theoretical model for MaaS systems, attacks are modeled as a malicious control

of a fraction of vehicles in the network. We then formulate a stochastic control problem that maximizes

the passenger loss in the network, and solve it as a sequence of linear and quadratic programs. Combined

with an economic model of supply and demand for attacks, we quantify how raising the cost of

attacks (such as increasing ride cancellation fees, higher level of security of the cyber components, and

better fraud detection by law enforcement agencies) removes economical incentives for DoS attacks.

Calibrating the model on 1B taxi rides, we dynamically simulate a system under attack and estimate the

passenger loss under different scenarios, such as arbitrarily depleting taxis or maximizing the passenger

loss. Cost of attacks of $15 protects the MaaS system against DoS attacks. The contributions is thus at

the same time in the analytical work which enabled the modeling and analysis of the network, and the

practical conclusions in terms of financial countermeasures to counteract the attacks.

I. INTRODUCTION

A. Motivation

Mobility-as-a-Service (MaaS) systems such as ride-sharing services and (electric) car rental

programs have expanding very quickly over the past years. The statistics are staggering: Uber
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launched in more than 120 cities worldwide [19], facing competition in the U.S. from Lyft which

operates in 60 cities [47] and in China from Didi Kuaidi which raised $1.2B [44]. An analysis of

the New York City Taxi & Limousine Commission (NYC TLC) data from January 2009 through

June 2015 and Uber data (see https://github.com/toddwschneider/nyc-taxi-data) shows that Uber

is taking millions of rides away from taxis in Manhattan [11]. Similarly, car-sharing programs

have been developed in response of the increasing population in cities, such as Zipcar which

has more then 10,000 vehicles in cities across the USA [45], the non-profit City CarShare in

the Bay Area, and Car2Go which offers one-way car sharing in Austin, TX. This revolution in

Personal Urban Mobility [30] is accompanied with the growing population in dense cities: 64%

of the developing world and 86% of the developed world is predicted to be urbanized by 2050,

which is approximately equivalent to 3B urbanites by 2050 [1]. Hence, it will be increasingly

challenging for cities to maintain and develop infrastructures that will fullfill the rapid increase

in transportation demands. As a result, the increased congestion of the road network will make

car ownership inconceivable and no longer sustainable. Morgan Stanley’s research shows that

cars are driven just 4% of the time [26] while the average cost of car ownership is nearly $9000

a year [38]. For example, car ownership has dropped by 30% from 2001 to 2015 in London

[39] and the population will increasingly rely on public transportation (bus usage has doubled

in the same period) and MaaS systems.

Optimal management of MaaS systems: Since urban population will heavily depend on

MaaS systems, research has become very active on their optimal management, e.g. there have

been works on real-time taxi dispatching [24], [29], optimal fleet sizing of vehicle rental systems

[14], optimal re-balancing to supply demand in New York City [51], and the financial benefits

of an autonomous MaaS system in Singapore [41]. Dispatching or re-balancing is the necessary

coordination of the vehicles’ dispatching to fulfill the uneven distribution of origins and desti-

nations of the requested rides. It can be done manually as commonly done by taxi companies

with human dispatchers, by apps such as taxi hailing apps, or by incentivization from the two-

sided markets formed by ride-sharing companies such as Uber or Lyft. It is also worth noting

that autonomous cars have aguably received a great deal of scientific attention, both Google

and Tesla predicting that autonomous cars will be available to the public by 2020 [25], [12].

Hence we include fleets of autonomous vehicles as part of MaaS systems, and research has also

been focused on the sustainability of autonomous fleets, suggesting that a fleet of 8000 to 9000

optimally-rebalanced autonomous vehicles (70% of the size of the current taxi fleet) can satisfy
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the taxi demand in Manhattan [51], [50].

Vulnerability to Denial-of-Service attacks: As MaaS systems will provide several millions

rides per day (Uber currently does 1 milion/day [18]), fleets of connected vehicles and their

passengers will be increasingly vulnerable to Denial-of-Service (DoS) attacks where attackers

are attempting to control and disrupt the re-balancing of vehicles to make them unavailable to

customers. Such attacks have alreaby been reported: Uber claimed Lyft requested and canceled

nearly 13,000 Uber rides and Lyft counted 5,560 canceled rides [23], [10], the goal being to

steal each other customers. Moreover, the vulnerability of self-driving cars to hacking is already

a major concern for automobile manufacturers developing them. For example, General Motors

created the new role of cybersecurity to make sure that the company’s future autonomous vehicles

remain safe [13]. In fact, Miller and Valasek hacked a Jeep and suggested that it is possible

to wirelessly control a fleet of 471,000 vehicles already on the road by exploiting a flaw in

their Internet-connected computer feature (Uconnect) [17]. Hence, it will be possible for fleets

of autonomous vehicles to be vulnerable to DoS attacks. The present article also provides a

framework for the analysis of the impact of DoS attacks on autonomous MaaS systems.

Cyber-security in transportation: The security of cyber-physical systems (along with Internet

of Things) have gained a lot of attention recently [5] because the consequences of cyber-attacks

on them are not just financial, they could result in real-world and real-time physical problems.

The vulnerability of transportation systems are real: two Israeli students have successfully hacked

the traffic app Waze causing it to report a nonexistent traffic jam [46], an Argentinian security

researcher hacked traffic lights’ sensors to trick their control systems into thinking that open

roadways are congested and control them indirectly [49]. Reilly et al. suggested different attack

scenarios on Freeways via Coordinated Ramp Metering attacks [35]. In general, there have been

research on the security of abstract networks [34], [52], with applications to power systems [40],

[48] and communication systems [3], [42].

B. Contributions and outline

To the best of our knowledge, we provide one of the first analysis frameworks for the financial

impacts of DoS attacks on MaaS systems. Here are our contributions:

Detailed statistical methodology: Even though our model expands an established queueing-

theoretical framework for the analysis of the sustainability benefits of MaaS systems, such as in

[14], [41], [51], we are among the first to provide a rigorous and detailed methodology for the
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learning and construction of our model. Starting from the representation of the taxi demand as a

Poisson point process, we analyze the simplifying assumptions leading to the Jackson network

model. Most importantly, this powerful framework provides the mathematical tools to analyze the

performance of networked systems at a macroscopic level. In general, queuing models have been

widely used by the scientific community to model and analyze systems in traffic engineering,

computing, and telecommunication [27] and to optimally design factories, shops, offices and

hospitals [16].

How to attack in practice? Our second contribution consists in providing realistic scenarios

of attacks on (autonomous) MaaS systems based on case studies of existing systems. Technically,

it is possible to issue DoS attacks against Uber and Lyft with relatively low (material) costs. The

most direct approach consists in simultaneously requesting from the same origin several rides

and take them to go to specific destinations to make the service unavailable at the origin. Another

approach consists in issuing coordinated pickup requests (without taking the rides) in order to

steer the vehicles outside of a specific target region. These can be real pickup requests which

would be canceled (with a $5 dollar fee), or emulated ones by purchasing short-lived phone

numbers tied to human verification farms for $85-$500 per 1K [43] and credit card numbers

for 50 cents per unit on black markets [8]. The possible attack of a fleet of connected vehicles

would also be possible as a relatively low (material) price. As documented in [17], it is first

necessary to acquire the hardware (typically the vehicle to be hacked) since the architecture of a

vehicle may be specific. Then analyzing weaknesses in the vehicle’s Internet-connected feature

enables to gain access to the vehicle’s micro-controller and design a firmware that would replace

the vehicle’s one to send commands to its physical parts. Assuming that all vehicles in the fleet

have the same architecture, the attack would work on any vehicles from the analysis of a single

one, hence the low price of the attacks on a fleet of vehicles.

Modeling of the attacks: Attacks can be seen as malicious agents controlling the vehicles

of the MaaS system, which we will refer to as Zombie passengers. When they are serviced

by real cars, e.g. Uber or Lyft, these cars become Zombified, i.e. a ZUber or a ZLyft (similar

attacks involving one company calling and canceling vehicles of the other have happened in the

past [37]).The term Zombie is used following computer science terminology for a computer that

has been compromised remotely by a hacker to launch DoS attacks. Expanding an established

framework in which the re-balanced MaaS system is cast into a queuing network where the

city blocks in Manhattan can be seen as server nodes (or stations), and cars as packets moving
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between stations [51], one of our main contributions is to model the attacks as a stochastic process

that control a fractions of the packets (the cars) for malicious purpose. This malicious stochastic

process is added to two stochastic processes introduced in [14], [51]: packets with customers (the

taxi demand) learned from the taxi data provided by the NYC TLC, and a re-balancing process

(the taxis being dispatched) to maintain high service availability in the network. Furthermore, to

capture different types of attacks, we also define the radius r of an attack, which is the furthest

(Manhattan or `1) distance that a Zombie can be routed through. This captures the fact that

the attacker has a weaker control over the network than customers. For example, if the attacker

targets a ride-sharing company by making a call and then canceling, only nearby vehicles will be

dispatched and affected. In the case of autonomous cars, the malicious behavior is more likely

to be detected if the cars are controlled by the attacker for a long period of time. With unlimited

resources, it would technically be possible to inject a very large flow of Zombies to disrupt the

system. However, we assume that the total rates of attacks is upper bounded by a budget b and

we also study the financial impact of optimally attacks on the system under different values of

the budget b.

Large-scale attack strategies: Casting the model of a MaaS system into a Jackson network

guarantees the existence of a set of balance equations and a product-form stationary distribution

for the stations occupancy, from which powerful analytic results have been derived [2]. There

results enable to characterize and compute the performance of large-scale networks such as

the Manhattan one. In particular, we focus on the availabilities of vehicles at each station and

formulate a mathematical program for the design of attack strategies that optimally disrupt the

MaaS system at the city scale, e.g. that maximizes the customer loss or minimizes the customer

time usage of the system. This mathematical program is not convex and first-order descent

methods are not tractable (O(N4) complexity where N is the number of stations) due to the

balance equations constraints, hence we propose a block-coordinated descent algorithm in which

each minimization block can be solved efficiently and each block can be seen as a specific attack

scenario.

Financial analysis: The optimization program provides different attack strategies that are then

implemented on a Jackson network simulation to evaluate dynamically different metrics such

as the increase in passenger loss or decrease in vehicle availabilities one hour after the attacks

have started to be injected into the balanced network. The incurred customer or customer time

usage loss are then mapped to financial losses for the MaaS system under attack and benefits
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for the attacks. For example, if the attacker is a rival MaaS system that receives a fraction of

the customers that were lost to the other system (from the DoS attacks), then a cost-benefit

analysis analysis shows the extent of damage that can be done with these attack. A case study in

NYC using a queuing model learned from the taxi data provided by the NYC TLC shows that

raising the cost of attacks to $15 is sufficient to deter rival companies from attacking via ride

cancellations. Hence our framework will be usable to compute the optimal attack price-point of

an attacker, hence helping cab companies to adjust the cost of attacking to protect them selves.

The cost of attacks is a sum of explicit costs such as cancellation fees or price of the hardware

necessary to inject the zombies, and hidden costs like the time it takes to access to fleet of

vehicles, or the probability of detection times the penalty.

II. LEARNING THE QUEUEING MODEL

In this section and the next one, we formally introduce the mathematical framework for our

analysis: 1) a discretization framework can be used to study these systems in practice (and apply

it to NYC), 2) the three stochastic processes describing the customer demand, the re-balancing

process, and the attacks, 3) and the queuing model that connects these three processes together.

A. A Poisson point process

We consider a bounded (geographical) region R ⊂ R2 and a time period [t1, t2] in which a

sequence of passenger rides xi = (ti, oi, di) for i ∈ N are requested, where ti is the start time

of the ride, oi ∈ R its origin, and di ∈ R its destination. We model the sequence of ride requests

as a Poisson point process X = (Xt, Xo, Xd) in the bounded space

Q := [t1, t2]×R×R (1)

with intensity function ρ : Q → [0, ∞) and intensity measure µ(B) :=
∫
B
ρ(ξ) dξ for all

B ⊆ Q. We suppose that for all B ⊆ Q, µ(B) < ∞ since Q is bounded. Hence the Poisson

point process satisfies the following two properties for any B ⊆ Q and n ∈ N [31]:

N(B) ∼ Pois(µ(B)) (2)

[XB |N(B) = n] ∼ Bin(B, n, ρ/µ(B)) (3)

where N(B) is the number of points (or ride requests) in B, XB the restriction of the Poisson

process X to the subset B, Pois(λ) the Poisson distribution with mean λ, and Bin(B, n, f) the

distribution of n i.i.d. points in B with common density f .
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Vehicles must be dispatched to pickup passengers requesting a rides. The number of vehicles

to be dispatched to a region R1 ⊂ R to supply for the demand in the time window [t, t+ ∆t] ⊂

[t1, t2] should be larger than the number of rides (ti, oi, di) with ti ∈ [t, t + ∆t] and oi ∈ R1,

i.e. larger than N(B), where B = [t, t+ ∆t]×R1×R. Using (3), a ride with origin o and start

time t and destination d ∈ R is chosen with probability density (with x = (t, o, d)):

P (Xd = d | o, t) =
ρ(x)

µ({t} × {o} ×R)
(4)

For tractability, we discretize the region R into N tiles Ti indexed by i ∈ S and the time

interval [t1, t2] into time windows of length ∆t. Blocks are chosen small enough such that all

trips end in a different block, and time intervals should be short so that the passenger demand

can be assumed constant, see Figure II-B for an example of discretization in NYC. Then pickup

requests arrivals within a tile Ti and time window τ := [t, t] follow a time-invariant Poisson

process with rate µ([t, t]× Ti ×R), and the destination tile Tj is chosen with probability

P (Xd ∈ Tj|Xt ∈ τ,Xo ∈ Ti) =
µ(τ × Ti × Tj)
µ(τ × Ti ×R)

(5)

which is a categorical distribution.

B. Statistically learning the demand

The pickup arrival rate in tile T and within times [t, t] follows a Poisson distribution with

mean µ([t, t]×T ×R). It is well-known that the sample mean is an unbiased minimum-variance

estimator1 (by achieving the Cramer-Rao lower bound), hence it is an efficient estimator of the

Poisson process [20]. An example of sample mean computed for each tile in part of Manhattan

is provided in Figure 1.

From (5), the destination tiles Tj of a trip starting at tile Ti and in time interval τ follows a

categorical distribution with probabilities denoted by pτij . The maximum-a-posteriori (MAP) of

the parameters {pτij}j∈S is the mode of the posterior Dirichlet distribution

MAP({pτij}j∈S | data) =
mτ
ij + nτij∑

k∈S m
τ
ik + nτik

(6)

where nτij is simply the number of trips starting at tile Ti in time interval τ and with destination

Tj , and mτ
ij are prior observations. Since we may not have any observations from the data,2 we

1Note that it is also a sufficient statistics for a Poisson distribution.
2In Figure 1, all observed trips starting at the edge of the region of study finish outside of it.
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Fig. 1. Average passenger arrival rates in Manhattan from January 2009 to June 2015 on weekdays from 5pm to

7pm, learned from a dataset of 1B taxi trips provided by the NYC TLC. The average pickup rate every 10min during

weekdays is provided in our video: https://www.youtube.com/watch?v=RwGttGlflsA.

choose mτ
ik = 1 for all k so that mτ

ik + nτik > 0. A possible improvement consists in choosing a

prior distribution {mik}k∈S proportional to the destination arrival rates.

III. QUEUEING MODEL

We now drop the superscript τ since we restrict our analysis to a specific time interval (5pm-

7pm for the NYC case study). We have considered a MaaS system in an urban area divided into

N tiles indexed by i ∈ S. We assume that M vehicles provide service to customers between

pairs of tiles (i, j) ∈ S ×S and cast the MaaS system into a Jackson model. Since vehicles are

‘processed’ by a server in each tile, we will refer tiles as stations, which convey the fact that

vehicles are queuing to be picked up by customers.
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Type rate routing contribution

customer φi αij MAS model [14]

balancer ψi βij re-balancing [51]

Zombie νi κij cyber-security

TABLE I

SUMMARY OF MODELS

Different types of passenger with their arrival rates, routing probabilities, and the authors who introduced them.

A. Three types of passengers

We describe the model for vehicles picking up customers and re-balancing themselves in the

network. Finally, we introduce our model for Zombies. Table I summarizes these three models.

Customer model: Customers arrive at each tile i following a time-invariant Poisson process

with rate φi > 0. Upon arrival at a station i, a customer chooses to go to station j 6= i with

probability αij ≥ 0, where
∑

j∈S αij = 1 and αii = 0 for all i ∈ S . Furthermore, if a vehicle

is not available at a station upon arrival of a customer, the customer leaves without service (i.e.

customers do not queue). The model also assumes that there is sufficient capacity for vehicle

to queue for passengers, as is often the case of pickup locations or taxi stations. The travel

times for different passengers traveling from station i to station j constitute an independently

and identically distributed (i.i.d.) sequence of exponentially distributed random variables with

mean Tij > 0. This model was used in [14] to describe a vehicle rental company as a queuing

network.

Re-balancing process: In any MaaS systems, there is a need for re-balancing to account for

uneven demand. A re-balancing vehicle is one traveling to a destination without customers to

fulfill the demand at its destination. The process has been studied extensively [24], [29], [51]

and we use the framework of [51] to model it with balancers driving these re-balancing vehicles.

This paradigm is analogous to the MaaS company “spoofing” its own drivers for re-balancing

purposes. In [51], each station i generates balancers according to a Poisson process with rate

ψi ≥ 0 and routes these balancers to station j 6= i with probability βij , where
∑

j∈S βij = 1 and

βii = 0 for all i ∈ S. The re-balancing process is assumed to be independent from the customer

arrival process. The model also supposes that the balancer is lost if there is no car at the station

upon its generation.
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Cyber-security: We extend the re-balancing work of [51] for the purpose of cyber-security

analysis. We assume the attacker can generate malicious agents or Zombies at each station i

following a Poisson process with rate νi ≥ 0 and route them to station j 6= i with probability

κij ≥ 0, where
∑

j∈S κij = 1 and κii = 0 for all i ∈ S. We assume that the re-balancing policy

does not detect the attacks and its parameters ψi and βij only depend on the customers’ demand

φi and αij . We also define the radius r of an attack, which is the furthest (Manhattan or `1)

distance that a Zombie can be routed through. Hence we define E the set of pairs (i, j) ∈ S ×S

such that routing is allowed from i to j. In other words, denoting 1A the indicator function of

event A, we have the constraints

1{(i,j)/∈E}κij = 0 ∀ i, j (7)

B. Comments on the Model

Although travel times are in general not exponentially distributed, their distribution does

not affect the predictive accuracy of similar queuing networks [21]. The customers’ routing

probabilities αij reasonably constitute an irreducible Markov chain for dense environments, and

we do not consider congestion, even though it negatively affects the efficiency of the network

and the effect of re-balancing.

Note that the “passenger loss” assumption in the model where passengers not willing to wait

(they leave the station immediately when there are no taxis available) is accurate in numerous

US markets. This framework is a good setting for analyzing the benefits and vulnerability of

MaaS systems: (i) with high service availability (the median wait time for an Uber in major

U.S. cities in 2014 was under 4 min [32]), and (ii) competing against other MaaS or alternate

transportation systems (particularly in dense cities where the waiting time is critical).

The passenger loss model is particularly relevant in an adversarial setting in which attacks

aim at reducing service availability to incur passenger loss and potentially encourage passengers

to use a rival system. From an analytical perspective, the passenger loss model considerably

simplifies our model because customer arrivals at a station is equivalent to a virtual service to

the vehicles currently queuing (and available) at the station.

The re-balancing and attacks are respectively modeled as balancers and Zombies following the

same process as customers (with passenger loss), but independently and with different arrival

rates and routing probabilities, thus allowing to combine the customer demand, the re-balancing
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process, and the attacks into a single queuing network. In our case, the loss of balancers and

Zombies describe processes that encourage a re-allocation of vehicles to stations but does not

enforce it.

Another critical assumption is that there is no attacker-defender game (see [7]) since the re-

balancing only aims at high service availability given customers’ demand, and does not try to

defend from possible attacks. An interesting extension would be the analysis of a one-stage game

in which the balancers moves first with the knowledge of the Zombies’ best response.

C. Jackson network model

Following [14] and [51], the model described above can be cast into a closed Jackson network,

which we now present with a cyber-attack extension. We combine the customer, balancer, and

Zombie processes. From the superposition of independent Poisson processes, the total arrival

process of all three types of passengers is Poisson with rate

λi = φi + ψi + νi (8)

where φi, ψi, and νi respectively represent the arrival rates of customers, balancers, and Zombies.

A generalized passenger that arrives will either be classified as one of the three classes with

respective probabilities φi/λi, ψi/λi, and νi/λi. The routing probability rij := P (i → j) of a

generalized passenger arriving at station i to select a destination j is then given by

rij =
∑
class

P (i→ j | class)P (class) (9)

With αij , βij , and κij being the routing probabilities associated to each class, we have (with λi

given by (8)):

rij = αij
φi
λi

+ βij
ψi
λi

+ κij
νi
λi

(10)

Stations are modeled as single-server (SS) nodes (or “station” nodes) and the route between

two stations as infinite-server (IS) nodes (or “route” nodes). When a generalized passenger arrives

at a non-empty station, a vehicle departs from that node to move to a route node that connect the

origin to the destination selected by that passenger. After spending an exponentially distributed

amount of time at the route node (the travel-time), the vehicle moves to the destination station

node (see Figure 2).

From a queuing perspective, if vehicles are present at station i, they are processed with service

rate λi given by (8), and are routed to the IS (route) node between stations i and j with probability
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Fig. 2. Illustration on a three station network. On the left, a passenger arrives at station 1 and picks a car to go to

station 2. The equivalent Jackson network is shown on the right side.

rij given by (10). Then vehicles at an IS node between stations i and j are processed in parallel

(i.e. assuming infinite capacity roads with no congestion effects) with service rate 1/Tij each

and move to SS node i with probability 1. Hence, the MaaS system is modeled as a closed

Jackson network with respect to the vehicles with vehicle service rate µn(xn) at a generalized

node n given by

µn(xn) =

λi if n = station i

xn/Tij if n = route i→ j
(11)

where xn ∈ {0, 1, · · · , M} is the number of vehicles at node n (and M the number of vehicles

in the network). Note that µn only depends on xn on a route node. The routing probability pnn′

from node n to node n′ is

pnn′ =


rij if n = station i, n′ = route i→ j

1 if n = route i→ j, n′ = station j

0 otherwise

(12)

D. Asymptotic Behavior and Fairness

A quantity of interest is the availability, which is defined as the percentage of customers who

find a vehicle available at a station upon arrival. Mathematically, it is given by the following
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steady-state probability (see [22]):

Ai(M) := P (Xi ≥ 1) =
γiG(M − 1)

G(M)
(13)

where the random variable Xi represent the queue length at station i ∈ S. Note that the quantity

G(M) above is the normalization factor associated to the equilibrium state distribution of the

queue lengths {Xi}i∈S provided by the Gordon-Newell theorem [15]. The computation of G(M)

is very expensive with complexity that grows as

|N |+M − 1

|N |

, where |N | is the cardinality

of N (i.e., the number of nodes in the network), so that |N | = N2. Hence, we want to obtain

performance metrics without computing explicitly the quantity G(M), e.g. by studying the

asymptotic behavior of the network when the fleet size M goes to infinity. The following result

from [33] gives the asymptotic availability at a SS node i:

ai := lim
M→∞

Ai(M) =
γi

maxj∈S γj
(14)

where maxj∈S γj is the highest relative utilization. Hence, when M approaches infinity, stations

with the highest relative utilization can have availability arbitrarily close to 1, while other stations

have availability strictly less than 1, since in this case γi < maxj∈S γj).

To cancel this effect, Zhang and Pavone [51] designed a re-balancing policy with balancer

arrival rates ψi and routing βij that maintain fairness in the network, i.e. γi = γj for all i, j ∈ S.

When M is goes to infinity, this means that the availability of all stations goes to 1 since

γi = maxj∈S γj for all i ∈ S . In addition to imposing fairness, they minimize the number of

re-balancing vehicles given by the quantity
∑

i,j∈S Tijβijψi.

IV. PROBLEM FORMULATION

The contributions of the present article encompass the objectives of an attacker into an

optimization framework, which we solve very efficiently.

A. Maximizing passenger loss

If the MaaS company gets a constant amount per ride, the attacker wants to maximize customer

loss, i.e. minimize the customers picking a vehicle:

min
∑
i∈S

φiAi(M) (15)



14

S Set of SS (station) nodes, |S| = N

M Fleet size of the MaaS system

Tij Mean travel time from i ∈ S to j ∈ S

φi, αij Customer arrival rate and routing matrix

ψi, βij Balancer arrival rate and routing matrix

νi, κij Zombie arrival rate and routing prob.

Ai(M) Prob. of i ∈ S of having ≥ 1 vehicle

ai asymptotic availability, γi/

1A indicator function of condition A

TABLE II

SUMMARY OF NOTATIONS

If the MaaS system gets an amount that is proportional to the length of the ride, a more harmful

objective is

min
∑
i,j∈S

φiαijTijAi(M) (16)

hence the total time usage for the customers is minimized.3 Both objectives have general form

min
∑
i∈S

wiAi(M) (17)

where wi > 0 are some user-defined arbitrary weights. To avoid computing G(M) due to the

complexity, the availabilities Ai(M) are normalized with and consequently study the availability

Ai(M) when the fleet size M goes to ∞ (see (14))

min
∑
i∈S

wi
γi

maxj∈S γj
= min

∑
i∈S

wiai (18)

Finally, there must be one i ∈ S such that ai = 1, hence the objective is equivalent to finding

the index k such that ak is set to 1 and minimizing over the remaining quantities {ai}i 6=k

min
k∈S

{
wk · 1 + min

{ai}i 6=k

∑
i 6=k

wiai

}
(19)

Hence, we can solve |S| = N programs and select the one with the minimum objective value.

3The distance Dij between stations i and j can also be included in the objective since fares as usually a combination of the

two.
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B. Attack budget

The most important constraints are the traffic equations of the Jackson network. Using Lemmas

4.1 and 4.2 in [51], they can be written in terms of SS (station) nodes and asymptotic utilization

ai

(φi + ψi + νi)ai =
∑
j∈S

(αjiφj + βjiψj + κjiνj)aj, ∀ i (20)

Let k ∈ S such that ak = 1, then the constraint is

φk + ψk + νk =
∑
j∈S

(αjkφj + βjkψj + κjkνj)aj (21)

Note that the constraint (21) is redundant since summing the constraints (20) for i 6= k (with

ak = 1) gives (21). Furthermore, the attacker injects Zombies with arrival rates νi and routing

matrix κij to achieve (19). With no restriction on the attack rates, setting νi = ν > 0 for all

i 6= k and routing all the Zombies to station k with probability 1 gives, using (21)

φk + ψk + νk =
∑
j 6=k

(αjkφj + βjkψj + ν)aj ≥
∑
j 6=k

νaj

∑
j 6=k

aj ≤ (φk + ψk + νk)/ν → 0 when ν → +∞

Then the positive utilizations ai go to 0 for all i 6= k and the problem is reduced to mink∈S wk.

Hence, a more realistic problem is setting a limited budget b for the attacks∑
i∈S

νi ≤ b (22)

C. Formulation

We suppose the customers’ and balancers’ demands are given, and define their combined rate

and routing probabilities as

ϕi := φi + ψi (23)

δij := (αijφi + βijψi)/(φi + ψi) (24)

and so the combined routing probabilities rij of the customers, balancers, and Zombies given in

(10) can be expressed as follows

rij =
δjiϕj + κjiνj
ϕi + νi

∀ i, j ∈ S (25)
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Given k ∈ S such that ak = 1, the Optimal Attack Problem (OAP) consists in manipulating the

Zombie arrival rates νi and routing κij probabilities such that:

min
κij ,νi,ai

∑
i 6=k

wiai (26)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (27)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (28)

νi ≥ 0,
∑
i

νi ≤ b (29)

We have also included the ai in the decision variables since they vary. In fact, the ai are

function of κij, νi and can be written directly as ai(κ, ν).

LEMMA 1. For any attack strategies νi and κij:

ai > 0 for all i ∈ S (30)

ai is uniquely defined for all i ∈ S (31)

Proof. By assumption, the probabilities αij constitute an irreducible Markov chain. By equation

(10), the probabilities rij lead to an irreducible Markov chain as well. The {ai}i vector satisfying

equations (27) is proportional to the steady state distribution for the transition probabilities {rij}ij
and by the Perron-Frobenius theorem, it is positive [28]. Finally, the constraint ak = 1 completely

fixes the vector {ai}i.

V. ANALYTICAL RESULTS

We first study a scenario in which the attacker aims at reducing the asymptotic availabilities

at all but one station by a constant factor for a network in equilibrium. In this case, we show

that the best strategy consists in routing all attacks to a single destination and we are able to

derive analytical results for the rates of attacks.

A. Uniformly reducing availabilities

We consider a re-balancing network where the combined rate {φi}i and routing probabilities

{δij}ij of the real and re-balancing passengers are given, and we denote {ai}i∈S the resulting

availabilities (before attacks). We consider a simple scenario in which the attacker reduces the
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availabilities at all stations by a constant factor, i.e. availability at station k is set to 1 and α ≥ 1

is maximized such that:

ãi =

1 if i = k

ai/α if i 6= k
(32)

where ãi are the availabilities resulting from the attacks. Now we propose and prove the

optimality of an attack strategy that maximizes α.

THEOREM 1. Consider a (balanced) MaaS system with initial asymptotic availabilities {ai}i∈S .

If we are given a budget b for the attacks that is at least a certain amount:

b ≥ (1− ak)ϕk
∑
j 6=k

δkj/aj (33)

Then the best attacks such that
∑

i νi ≤ b, resulting in station k having asymptotic availability

equal to 1 and all other stations’ availabilities decrease by the same factor α ≥ 1 can be

achieved by the following policy:

νi =


bδki

ai
∑

j 6=k δkj/aj
if i 6= k

0 if i = k
(34)

κij =

1 if i 6= k, j = k

0 otherwise
(35)

We call it the “Single-Destination Attack Policy” (SDAP) since all attacks are routed to k. It

results in:

α = ak +
b

ϕk
∑

j 6=k δkj/aj
(36)

Proof. The balance equations before attacks are:∑
j 6=i

ajϕjδji = aiϕi ∀ i ∈ S (37)

After attacks, the equations can be written as:∑
j 6=i

ãj(νjκji + ϕjδji) = ãi(νi + ϕi) ∀ i ∈ S (38)
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Given (32), the above equation at index k is:∑
j 6=k

aj
α

(νjκjk + ϕjδjk) = νk + ϕk (39)

1

α
=

νk + ϕk∑
j 6=k aj(νjκjk + ϕjδjk)

(40)

We first maximize α with respect to the routing probabilities {κij}ij , which is clearly achieved

when κij satisfies the policy (35). As a result, equations (38) combined with (32) and (35)

become: ∑
j /∈{i,k}

aj
α
ϕjδji+ ϕkδki =

ai
α

(νi + ϕi) ∀ i 6= k (41)

Multiplying by α and subtracting (38) on both sides:

ϕkδki(α− ak) = aiνi ∀ i 6= k (42)

α = ak + aiνi/(ϕkδki) ∀ i : δki > 0 (43)

From (42), νi is proportional to δki/ai for all i 6= k, thus

νi∑
i 6=k νi

=
δki/ai∑
j 6=k δkj/aj

∀ i 6= k (44)

Plugging the above expression into (43)

α = ak +

∑
i 6=k νi

ϕk
∑

j 6=k δkj/aj
(45)

Hence α is maximized when
∑

i 6=k νi = b, setting {νi}i∈S to follow policy (34) (using (44)).

We verify that the policy derived above is feasible given (37). Finally, we want α ≥ 1, which

implies (33).

We make some comments on the effectiveness of attacks discussed presented in Theorem 1.

Under the SDAP, ak = 1 reduces condition (33) to b ≥ 0, i.e. any budget leads to α ≥ 1. If

ak < 1, then α ≥ 1 requires a minimum positive budget given by (33). However, if ak < 1 and

(33) is not verified, then α < 1 and re-normalizing so that we get valid asymptotic availabilities

after attacks gives

ãi =

α if i = k

ai if i 6= k
(46)

where there exists i 6= k such that ai = 1. In this particular case, the attack only increases

the asymptotic availability at station k while keeping other availabilities constant. Consequently,
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using the optimality of the SDAP within the framework of Theorem 1, we have the following

corollary

COROLLARY 1. Given a MaaS system with availabilities {ai}i∈S and a budget b ≥ 0, if the

objective is to reduce the asymptotic availability of all stations by a constant factor α ≥ 1

except one station, inequality (33) is a necessary condition for optimality. A sufficient condition

for optimality is choosing the index k from the set
{
i ∈ S : b ≥ (1− ai)ϕi

∑
j 6=i δij/aj

}
that

minimizes

wk +

(∑
i 6=k

wia
0
i

)(
1 +

b

ϕk
∑

j 6=k δkj/a
0
j

)−1
(47)

B. Case of balanced network under attacks

The result in Theorem 1 holds for MaaS systems with or without re-balancing passengers. If

the MaaS is balanced, i.e. ai = 1 for all i ∈ S, then the SDAP reduces to

νi = bδki ∀ i 6= k, νk = 0 (48)

κij =

1 if i 6= k, j = k

0 otherwise
(49)

resulting in ãi = 1/α for all i 6= k and ãk = 1, with:

α = 1 + b/ϕk (50)

Hence, for a balanced network in equilibrium, the passenger loss incurred by this attack strategy

when the fleet size approaches infinity is asymptotically∑
i∈S

wi(ai − ãi) =
∑
i 6=k

wi

(
1− 1

α

)
(51)

=
b

ϕk + b

∑
i 6=k

wi (52)

We note that the attacks have great effects for small budgets, with incurred losses scaling linearly

in b: ∑
i∈S

wi(ai − ãi) ≈
b

ϕk

∑
i 6=k

wi for b� ϕk (53)

Hence, when routing the attacked vehicles to a single destination station k, it is best to pick a

station k with low customer demand and low re-balancing rate ϕk = φk + ψk and small weight
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wk. Concretely, an attack sending all the vehicles to a single station k aims at having an excess

of supply at this station while depriving the rest of the network of vehicles. The quantity ϕk

is the rate at which the vehicles are sent away from k from customer rides or re-dispatching,

hence it is more effective to maliciously send vehicles in parts of the network with low activity.

C. Budget maximization as a prerequisite for optimality

We now show that all of the budget b has to be used for an attack to be optimal. While this

result is intuitive and can be proved directly from the KKT conditions associated to the OAP,

we present an alternate proof which gives additional insights on the OAP. Theorem 1 leads to

the following result:

THEOREM 2. Equality
∑

i∈S νi = b is a necessary condition for a solution of the OAP to be

optimal.

Proof. Suppose b > 0 (otherwise there is no attack). Let (ai, νi, κij) be a feasible solution of

the OAP such that
∑

i∈S νi < b. We show that it is not optimal. We combine the Zombies to

the real and re-balancing passengers:

ϕ̃i := ϕi + νi (54)

δ̃ij := (δjiϕj + κjiνj)/(ϕi + νi) (55)

b̃ := b−
∑
i∈S

νi > 0 (56)

Then applying policy the SDAP with ϕ̃i, δ̃ij, b̃, ai and k such that ak = 1 decreases the ai for

i 6= k by a factor α > 1 (using (36) and the assumptions that b, ϕk > 0) Since the wi’s are

positive by assumption and the ai’s are positive from Lemma 1, the objective decreases by a

positive amount. Let us denote ν̃i and κ̃ij the resulting attack policy. Then, the combination of

(νi, κij) and (ν̃i, κ̃ij) given by ν̃i + νi and (κ̃jiν̃j + κjiνj)/(ν̃i + νi) is still feasible for the OAP

and decreases the objective by a positive amount.

VI. BLOCK-COORDINATE DESCENT

In this section, one of our contributions is to propose an algorithm to efficiently solve the OAP.

Noting that first-order methods are not tractable because of the balance constraints, we propose

a block-coordinate descent algorithm in which the three blocks can be solved very efficiently,
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two being linear programs (LP) with N2 variables, and the third one a quadratically constrained

quadratic program (QCQP) with N variables (N being the number of stations). We also add a

small cost of attacking p
∑

i νi to the objective4 such that objective becomes:

min
κij ,νi,ai

∑
i 6=k

wiai + p
∑
i

νi (57)

A detailed justification of it is provided in Section VI-E.

A. Non-tractable first-order methods

The OAP (26)-(29) is non-convex because the equality constraints (28) are not linear, hence

the well-known Lagrangian approach fail to provide sufficient conditions for optimality of a

solution [4]. So one can only hope to find stationary points. In addition, first-order methods

such as gradient descent algorithms are not tractable in practice. Specifically, the vector {ai}i∈S
is a function of κij, νi from Lemma 1, hence the gradient of the objective is given by

∑
l 6=k

wi

 {∂νial}i∈S{
∂κijal

}
(i,j)∈S×S

 (58)

where each partial derivative of ai satisfies a set of N − 1 linear equations obtained by dif-

ferentiating the balance constraints (27). Hence, computing the gradient prohibitively requires

to solve N2 linear programs of dimension N − 1 by differentiating the constraints (27). The

total complexity for computing the gradient is (N2 − N)2 ≥ (N − 1)4, where N for a typical

implementation of the model like in NYC is of the order of 500. One of our main contributions

is the design of a tractable block-coordinate descent algorithm to solve the above problem, where

each sub-problem is summarized in Algorithm 1. We pose the Minimum Attack Problem (MAP)

and the Attack Routing Problem (ARoP) and show that they can be re-formulated as linear

programs (LP) with N2 non-negative variables and N constraints. Using an efficient solver,

CPLEX, we solve the MAP and ARoP efficiently. The Attack Rate Problem (ARaP) has N

variables which are {νi}i∈S and can be solved efficiently using a projected gradient descent

algorithm. The gradient computation requires solving N linear programs of dimension N − 1,

hence an O(N3) complexity that is tractable. We also note that the ARoP, MAP, and ARaP can

be interpreted as specific attack scenarios in their own right. Specifically, in each scenario, the

attacker is given a fixed allocation of either the availabilities ai, the attack rates νi, or the attack

4This can be seen as a `1-regularization term.
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routing κij , and he wants to allocate the two other types of “resources” optimally to harm the

system. We also describe how each one of these programs fits into the proposed block-coordinate

descent algorithm.

Algorithm 1 Algorithm for solving the AOP.
1: choose arbitrary station k ∈ S.

2: initialize νi and κij

3: while stopping criteria not satisfied:

4: update ai, κij via Attack Routing Pb. (ARoP) with νi fixed.

5: update νi, κij via Min Attack Pb. (MAP) with ai fixed.

6: update ai, νi via Attack Rate Pb. (ARaP) with κij fixed.

7: return ai, νi, κij

B. Attack Routing Problem (ARoP)

In this scenario, the attacker can only inject attacks with fixed rates. For example, the attacker

has placed devices at different stations i ∈ S that remotely spoof the hailing apps of nearby

vehicles, to send them to specific locations. Hence, given νi, the attacker wants to optimize the

routing to achieve objective (19). This is the Attack Routing Problem (ARoP), which can be

re-formulated as a Linear Program from this lemma

THEOREM 3. Let us consider the following linear program (LARoP)

min
yij

∑
ij

wiyij (59)

s.t.
∑
j 6=i

(λiyij − νjyji) =
∑
j>l

δjiϕjyjl ∀ i 6= k (60)

yij ≥ 0,
∑
j 6=k

ykj = 1 (61)

Let y?ij be an optimal solution to LARoP. Then, an optimal solution of the ARoP is

ai =
∑
j 6=i

y?ij (62)

κij = y?ij/ai (63)

Proof. We can obtain LARoP from the OAP by fixing νi and making the change of variables

yij := κijai to equations (26) – (28).
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We decrease the
∑

i 6=k wiai part of the objective of the OAP with respect to ai, κij by solving

the above program efficiently with CPLEX, as part of our block-coordinate descent algorithm.

C. Attack Rate Problem (ARaP)

In this scenario, the attacker hacks the apps of the vehicles to display “ghost” demands at

specific stations i. With fixed routing κij , the attack rates νi are chosen to achieve objective (26).

The Attack Rate Problem (ARaP) consists in optimizing the OAP with respect to the rates νi

for all i and the asymptotic availabilities ai for i 6= k, while the routing of attacks κij are fixed.

Since the sum
∑

i 6=k wiai is a function of the νi, we compute the Jacobian matrix of the vector

{ai}i 6=k, which is given by the following:

LEMMA 2. The Jacobian matrix (∂ai/∂νj)i 6=k,j∈S of dimension (N − 1) × N has columns

xj ∈ RN−1 for j ∈ S that satisfy

(D −M)xj = vj ∀ j ∈ S (64)

where D is a diagonal matrix with entries {ϕi + νi}i 6=k, M = {φjδji + νjκji}i 6=k,j 6=k, and

vj ∈ RN−1 for j ∈ S are vectors with entries {aj(κji − 1{i=j})}i 6=k where 1A is the indicator

function of event A.

Solving the above N systems of N − 1 linear equations gives the Jacobian of {ai}i 6=k. Hence

we can solve the ARaP with the projected gradient descent algorithm, where g is the gradient

of the objective:

{νi}i∈S :=Π ({νi}i∈S − t g) (65)

g :=
∑
i 6=k

(∂ai/∂νj)j∈S + p (66)

where t > 0 is the step size and Π is the projection onto the `1-ball of radius b, i.e. {x ∈ RS≥0 :∑
i∈S xi ≤ b}. We use the O(N logN) implementation described in [9]. We use a step size

decreasing in 1/
√
n where n is the number of iterations and complement it with a simple line

search to have a lower objective at each iteration.

t← t/2 while f({νi}i∈S − t g) > f({νi}i∈S) (67)
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D. Minimum Attack Problem (MAP)

We consider a scenario in which the attacker wants to achieve target availabilities ai at each

station in the network with the minimum cost of attacks
∑

i νi. The Minimum Attack Problem

(MAP) can be formulated as follows

min
κij ,νi

∑
i

νi (68)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (69)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (70)

νi ≥ 0 ∀ i ∈ S (71)

The constraints can be formulated as flow constraints

THEOREM 4. Let us define

si := aiϕi −
∑
j 6=i

ajδjiϕj ∀ i ∈ S (72)

and consider the following Quadratic Program

min
xij

∑
i,j

xij
ai

(73)

s.t.
∑
j 6=i

(xji − xij) = si ∀ i ∈ S (74)

xij ≥ 0 1{(i,j)/∈E}xij = 0 ∀ i, j ∈ S (75)

This is always feasible. Let x?ij be an optimal solution to it. Then, an optimal solution to the

MAP is:

νi =
∑
j 6=i

x?ij/ai (76)

κij =

x
?
ij/(νiai) if νi > 0

1/
∑

j 1{(i,j)∈E} otherwise
(77)

Proof. We apply the following change of variables

xij := νiκijai ∀ i, j (78)
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which converts the MAP into the above program with {si}i∈S given by (72) and νi =
∑

j 6=i xij/ai

as a result of the change of variable. Note that xij can be interpreted as the rate of attack from

station i to j. This problem is feasible because the capacity on each edge is unbounded and the

source flows sum to 0: ∑
i

si =
∑
i

aiϕi −
∑
i,j 6=i

ajδjiϕi = 0 (79)

Therefore, we can find the minimal-cost attacks that achieve any arbitrary availabilities.

Within the proposed block-coordinate descent framework, we add the budget constraint (29)

to the MAP using the solution of the previous step as initial solution, and solve it efficiently

using CPLEX. Note that the objective of the above program can be generalized to any convex

function, and a linear objective results in a min-cost-flow problem (MCFP). This reduction to a

MCFP was shown in [51] for the purpose of re-balancing vehicles with an objective minimizing

the number of re-balancing trips

min
ψi, βij

∑
i,j

ψiTijβij (80)

where ψi, βij are the balancers arrival rates and routing probabilities respectively. In our case,

the MAP step of our algorithm redistributes the highest attack rates among stations, thus avoiding

numerical corner cases associated to the sparsity promoting constraint (29).

E. Note on the penalization

We include the `1-regularization term in the objective so that it becomes:

min
κij ,νi,ai

∑
i 6=k

wiai + p
∑
i

νi (81)

The main reason is numerical. Having a term in the objective that depends on the attack rates νi

enables to pose the MAP block of our block-coordinate descent algorithm, when the availabilities

ai are fixed. The MAP essentially computes a better re-allocation of the attacks (in terms of total

rate minimization) to incur the same loss
∑

iwiai to the MaaS system. If the MAP computes

a strictly better attack strategy, then necessarily
∑

i νi < b, and from Theorem 2, the unused

part of the budget can be used to increase the customer loss of the MaaS system, which is

accomplished by the two other steps of the block-descent algorithm.

Had we known the gain for the attacker from incurring passenger loss to the MaaS system, e.g.

a rival company stealing a fraction of the passengers that are lost to the other system, along with
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the knowledge of the cost of attacks, we could have solved the OAP with p equal to the ratio of

the attack cost over the gain from passenger loss for the attacker. This can be solved efficiently

with the proposed gradient descent algorithm and would embed directly a benefit-cost analysis

into the optimization program. However, without the knowledge of these parameters, a more

systematic way to proceed consists in setting the weight p of the penalty to be small enough

so that all the budget is used, and compute the loss incurred from the attacks under different

values of the budget b. This enables to analyze the costs and benefits of attacking under different

values of the parameters, which we do in the next section.

Fig. 3. Effect of Radius of Attacks. (a): Target availability pattern following a pixelated version of the “Cal” logo. (b),

(c): Best attack policy to achieve the target with maximum `1-radius of 0.3km (1 block) and 2km (7 blocks) respectively:

each arrow shows the direction of the κij-weighted barycenter of the destination stations j from an origin i, and the

color of each square encodes the attack rate. (d): Total attack rate per hour needed to achieve the specified availabilities

as a function of radius. We can see that if we limit the radius of attacks to one block, as in (b), vehicles are routed

through many intermediate stations, whereas in (c), increasing the radius allows the attacker to remove cars from regions

with low availabilities (yellow in (a)) and send them directly to the borders of Manhattan. Hence, limiting the attack

radius greatly hinders the attacks’ effectiveness, and increasing the radius past 1-2 km results in diminishing returns.

VII. QUANTIFYING COUNTERMEASURES

We now study the economics of the resiliency of MaaS systems to DoS attacks and illustrate

our results with a case study in Manhattan. In particular, we conduct a cost-benefit analysis and
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find that raising the expected cost of attacks to 1.5 times the gain for the attacker from incurring

passenger loss protects MaaS systems from DoS attacks.

A. Data sources and methodology

Specific to the case study in Manhattan, we choose the tiles to be approximately the size of

two city blocks which is a good trade-off between precision and tractability: 1) any taxi that

is within two blocks of a pickup location can reach the exact location within minutes, 2) the

destination is more than two blocks away, hence trips do not stay within a tile, and 3) Manhattan

is then divided into 531 tiles (see Figure 1), which gives a problem with 5312 ≈ 300, 000 decision

variables that can be solved efficiently. The time windows are chosen to be one/two-hour long

which is small enough to ignore time variability in the taxi demand. Using the 1.1 billion taxi

trips from January 2009 to June 2015 provided by the NYC TLC, we extracted 75M passenger

rides on all weekdays between 5pm and 7pm and we learned the customer demand φi, αij using

the methodology presented in Section 2. The total customer arrival rate is about 10,600 per hour

(see Figure 1) and there are about 2,500 taxis in the network in this time period.

We then solve the MAP with objective min
∑

i,j φiTijαij to estimate the optimal re-balancing

process ψi, βij . Combining the customer demand and balancing process (assuming the system is

balanced), the solution of the OAP provides an attack strategy that maximizes the passenger loss

in the network. While the OAP is a useful framework for computing optimal attack strategies

for a system in equilibrium, we also simulate a Jackson network with N2 ≈ 300, 000 nodes,

described in (11), (12), to dynamically estimate the passenger loss L incurred by the attacks

during the first hour after the attacks have started.

B. Cost-benefit analysis

Following the methodology in [6], we propose a basic economic model of supply and demand

for attacks. Assuming that attackers make rational decisions, a market of attacks is a useful

starting point for evaluating the volume of attacks, in which the profit for the attacker is given

by αL−β
∑

i νi where αL is the gain for the attacker as a linear function the incurred passenger

loss, and β
∑

i νi the cost of the attacks. The parameters α and β can be seen as a level of security,

where the security increases if α is lower and β higher. Hence, given a level of security (α, β),

attackers balance the cost of additional attacks against the benefits from additional attacks. We
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now provide simple estimates for α, β, an in-depth study of the costs and benefits of attacks

being beyond the scope of the article.

Explicit cost of attacks: The explicit cost of attacks is generally very low. For instance, for

ride-sharing services such as Uber or Lyft, pickup requests being cancelled using a real account

cost $5 per unit. The cost a fake account is less than $1 since both credit card numbers and phone

numbers (tied to human verification farms) reportedly cost less than $0.5 per unit [43], [8]. In

addition, there is a fixed cost, e.g. the hardware required for generating the attacks. Following the

attack on Waze [46], it is possible to emulate Android phones on a computer. Hence, the fixed

cost is less than $2000 to host (potentially thousands of) fake Uber/Lyft accounts. Based on the

following study [17], an attack on a fleet of Internet-connected autonomous vehicles requires

the analysis of the hardware of one vehicle to be able to gain remote access to other vehicles of

the fleet. Hence, the fixed cost of attacking MaaS systems is independent of the fleet size and

the rate of attacks, which makes MaaS systems particularly vulnerable to attacks.

Hidden cost of attacks: The hidden costs are arguably much higher than the explicit costs.

For current ride-sharing systems such as Uber and Lyft, suspicious (or malicious) accounts

can be detected and blocked easily, along with its associated phone and credit card numbers.

Buying phone and credit card numbers on the black markets has a risk of being caught by

law enforcement agencies. These hidden costs can be modeled as βhidden = P (detection) ×

Penalty i.e. a probability of being detected times the penalty of being caught. Hence, more

efficient law enforcement and crimes detection can achieve a higher level of security by increasing

P (detection) and the Penalty. It is worth noting that some taxi companies, e.g. Taxis G7 in

France (http://www.taxisg7.fr/), does not require the creation of a PIN verified account to make

a request, hence P (detection) = 0 are the only (explicit) cost is the call ($.16/min). Hidden costs

also include the working time necessary for designing DoS attacks which can take the form of

a salary paid to the hackers. The cost of labor can be high and it is an increasing function of

the level of protection of cyber-physical systems again security breaches.

Gain for the attacker: Reasons for DoS attacks are multiple,5 e.g. extortion, blackmail,

expression of anger and criticism, punishment (for refusing an extortion demand and thus

disrupting the attackers’ business model). Because of the wide variety of motives, the benefits

should be estimated case by case. In the case of anti-competition practice in two-sided networks

5See: https://zeltser.com/reasons-for-denial-of-service-attacks/
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(e.g. Uber and Lyft), the gains for DoS attacks can be enormous since successful platforms enjoy

increasing returns to scale [36]. The high costs and high benefits of attacks on a large-scale MaaS

system justifies the need of a business model for the attacker to make rational decisions.

The defender side: Protecting mass-produced systems (e.g. Internet-connected vehicles, smart

watches etc.) against security breaches is costly, hence companies are encouraged to under invest

in cyber security. While a cost-benefit analysis can also be conducted to estimate the optimal

amount of security for the defender, this study is beyond the scope of the article.

C. Controlling availabilities

In this experiment, given any arbitrary set of availabilities ai for i ∈ S (S being the set

of stations), we find the minimal cost of attacks such that the resulting availabilities match the

provided ones. We show that we can create arbitrary availability patterns in the city, in particular

the “Cal” logo, see Figure 3a. Assuming a balanced MaaS system, we first balance the network

using the methodology of [51], i.e. solving the MAP (69)-(71) (i.e. the second step in our

block-coordinate descent algorithm to solve the OAP) with the availabilities uniformly equal to

1 and with an objective that minimized the number of re-balancing vehicles (80). This yields a

total rate of 2,200 re-balancing vehicles per hour. We then compute the attack strategy on the

balanced network by solving the MAP. When the attacking radius is unlimited, injecting only

800 Zombies per hour achieves the availability pattern encoded in the “Cal” logo. Assuming

that a unit of attack is $5 (current cancellation for a Uber/Lyft ride), only $4000 per hour is

sufficient to deplete the network following this pattern.

Next, we restrict the radius of attacks by limiting the routing from a station i to station j to

be between 1 and 15 in terms of Manhattan distance (or `1 distance), with a station block as a

unit of length (0.3km per block). We find the minimum attacks rate needed to create the “Cal”

logo, as illustrated by Figures 3.

D. Minimizing availabilities

In this experiment, we solve the OAP that minimizes the time usage (16). We note that there

are very large disparities in customer arrival rates: the stations close to Grand Central station

having customer arrival rates of 200 vehicles per hour while the stations along East river have

one customer arrival every four hours on average between 5 and 7pm. To avoid numerical

difficulties related to it, we cluster adjacent blocks together such that the minimum aggregated
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arrival rate at a station is 30 customers per hour, resulting in a reduction to 331 blocks. We then

balance the network and apply the proposed block-coordinate descent algorithm for solving the

OAP with an objective (16) minimizing the customer time usage in the network. The different

steps are summarized in Algorithm 1.

Fig. 4. Network Simulation Results. A simulation is run with 2650 taxis in a Jackson network. After 1 hour of balancing,

the network is attacked (following a strategy given by a solution to the OAP). The budget of attacks is 3000 requests

per hour, corresponding to 19% of the total rate. The figure shows the passenger loss in log-scale per station over (a): 1

hour of balancing, (b): 1 hour of attacks. (c) shows the total number of customers lost over time. The total cumulative

loss is slightly above 2000 passengers one hour after the start of the attacks.

We do not set a limit on the radius of attacks and apply the descent method for values of the

budget b of attack rate in {100, 500, 1000, 1500, 2000, 2500, 3000, 5000, 7000, 10000} with the

weight p of the `1-penalty equal to 0.1 for b ≤ 1000 and 0.01 otherwise. The total customer

and balancer arrival rates remains unchanged on the reduced network, with 10,600 and 2,200

vehicles per hour respectively, hence the total attack rate accounts for 0.8% to 44% of the total
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Fig. 5. Optimal Attack Rates and Routing. (a) and (b): The attack rates and routing probabilities for a total budget

of 2000 Zombies per hour are showed in the same style as in Figure 3, with an unlimited radius and 3km (9 squares)

radius respectively. (c): Passenger/financial loss as a function of attacks from 10 simulations of the Jackson network

(each one associated to a given budget and a strategy computed from the OAP). The vertical scale on the left shows

the rate of passenger loss and the one on the right the financial loss assuming that a passenger spends $10.75 on an

average. The red line denotes the price of attack (assuming $5/unit) against the budget. If 100% of the loss is gained by

the attacker (from stealing customers), then the red region is financially beneficial for the attacker. The red line shows

that an attack costing $5/unit (its slope) incurs a maximum loss of $22,500/hour for the MaaS system. (d): Maximum

financial loss for the MaaS system as a function of the cost of one unit of attack, obtained from (c). A cost of attack

above $15 protects the system.

rate (all three types of passengers). Initializing with uniform Zombies arrival rate throughout

the network and uniform distributions for the routing probabilities, Algorithm 1 gives an attack

strategy sending Zombies to several spots around the center of Manhattan, see Figure VII-Da and

b. In equilibrium, these target regions have high availabilities while the rest of Manhattan has

very low availabilities. These results are similar to the analytical ones in Section V, where it was

proved that the optimal attack strategy is one that sends all the vehicles in a single destination

station (see Theorem 1).

E. Network simulation

Solving for the attack rates using the OAP gives very low objective values, with a loss of

customer time usage from 60% to 100%. This surprising efficiency is in fact the asymptotic

behavior of the system under attacks, where most of the vehicles are blocked in the center

region because the re-dispatch process does not send the vehicles in other parts of the network
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in reaction to the attacks. To account for the transient state, we run a simulation of the Jackson

network used for our model to study the effectiveness of our attack strategy, with 2500 taxis

(average number of taxis in the area at the time of the day used for our parameter inference).

We start from a closed network in equilibrium and introduce attacks. For each queue in the

simulation, customers, balancers and Zombies arrive with our specified rates, and are lost when

there are no vehicles in the queue. We then record the number of customers lost for one hour

and subtract from this the base rate of loss when the network is balanced. One run of a Jackson

network simulation is presented in Figure 4 for a budget of 3000 attacks per hour. Slightly

above 2000 passengers are lost after one hour of attacks. This gives the seventh sample point

in Figure VII-Dc. Figure VII-Dc and VII-Dd show the results of our analysis. Assuming that

the cost of an attack is $5 (the cost of canceling an Uber/Lyft ride) and the gain of the attacker

is $10.75 (the average cost of a ride in the area estimated from our data-set), Figure VII-Dc

shows that it is not economical to attack with more than 5000 Zombies per hour. From this, we

can deduce that a cost of attack greater than $15 protects the MaaS system against attacks. This

can be generalized to a cost of attacks being approximately 1.5 times higher than the gain from

incurring passenger loss.

VIII. CONCLUSIONS AND FUTURE WORK

We described an analysis framework for quantifying the vulnerability to MaaS systems to

DoS attacks. We first model the customer demand as a discretized Poisson point process learned

from taxi data in Manhattan. The model for the MaaS system is cast into a Jackson network

which enables to formulate a mathematical program for attack strategies that maximize the

passenger loss in equilibrium. The strategy is then implemented on a Jackson network simulation

to dynamically estimate the passenger loss incurred by the attacks. We then present a cost-benefit

analysis for the attacker which is a first step in estimating the volume of attacks. For the case

study of Manhattan in the context of anti-competition practice, it is demonstrated that DoS

attacks costing more than $15 per unit do not compensate the benefits for the attacker from

incurring passenger loss and stealing passengers.

The present work opens up exciting avenues of future work. We have largely ignored con-

gestion effects on the network and would like to include them in future work. We also assumed

that the MaaS company does not respond to the attacks. Hence, future work include methods to

detect suspicious routing of the vehicles, and a attacker-defender game.
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