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Abstract
We study the convex relaxation of a polynomial optimization problem, maximizing
a product of linear forms over the complex sphere. We show that this convex pro-
gram is also a relaxation of the permanent of Hermitian positive semidefinite (HPSD)
matrices. By analyzing a constructive randomized rounding algorithm, we obtain an
improved multiplicative approximation factor to the permanent of HPSD matrices, as
well as computationally efficient certificates for this approximation. We also propose
an analog of van der Waerden’s conjecture for HPSD matrices, where the polynomial
optimization problem is interpreted as a relaxation of the permanent.

1 Introduction

We study the problem of maximizing a product of linear forms on the complex (n−1)-
sphere of radius

√
n:

r(A) ≡ max
‖x‖2=n

n∏

i=1

|〈x, vi 〉|2 , (1)

where A = V †V and vi are the columns of V . We show that the natural convex
relaxation of (1),

max
n∏

i=1

v
†
i Pvi s.t. Tr(P) = n, P � 0, (2)
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is also a relaxation of the permanent of A, which is defined by

per(A) =
∑

σ∈Sn

n∏

i=1

Ai,σ (i), (3)

where the sum is over all n! permutations of n elements. Computing the permanent
exactly is #P-hard [14], and approximation efforts have been focused on classes of
matrices with computationally efficient certificates of permanent non-negativity. For
matrices with non-negative entries, [9] gave a randomized algorithm achieving a (1+
ε)-approximation. There has been recent interest in approximating the permanent of
HPSD matrices due to their applications in quantum information [7]. The work by [1]
gave the first polynomial-time algorithm for approximating the permanent of HPSD
matrices with a simply exponential multiplicative approximation factor of n!

nn e
−nγ ,

where γ ≈ 0.577 is the Euler–Mascheroni constant. Their algorithm is based on the
following convex program relaxation of the permanent.

Definition 1.1 Given a HPSD matrix A ∈ C
n×n , we define rel(A) as the solution to

the optimization problem:

rel(A) ≡
{
min

∏n
i=1 Dii

s.t. A 
 D, D is diagonal
(4)

In this paper, we show that rel(A) is equivalent to the convex relaxation (2). Our
main result, Theorem 4.4, uses this connection between the polynomial optimization
problem (1) and per(A) to provide a new analysis of the approximation of per(A) in
terms of the rank of the optimal solution to (2). By bounding this rank, we prove an
improved approximation factor for all finite n:

Corollary 1.2 Given a HPSD matrix A ∈ C
n×n, rel(A) is an n!

nn e
−nLr -approximation

to per(A):

n!
nn

e−nLr rel(A) ≤ per(A) ≤ rel(A)

where r = O(
√
n), Lr = Hr−1 − log(r), and Hr = ∑r

k=1
1
k is the r-th harmonic

number.

From the definition of the Euler–Mascheroni constant, limn→∞ Lr = γ . For any finite
n, Lr < γ and thus n!

nn e
−nLr > n!

nn e
−nγ . More precisely, using Proposition A.1, we

can show that this is a eO(
√
n) multiplicative improvement. [1] also constructed a series

of matrices Ak such that (rel(Ak)/ per(Ak)))
1/n → e1+γ as k → ∞. However since

this result only rules out improvements on the order of eO(n), it does not contradict
Corollary 1.2.

In Sect. 3 we analyze the convex relaxation of (1), describe a rounding procedure
and prove its approximation factor. In particular we prove that

e−nLr rel(A) ≤ r(A) ≤ rel(A).
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In Sect. 4 we prove Theorem 4.4. We first show that the convex relaxation of r(A)

is equivalent to rel(A). Then using the vector produced by the rounding procedure of
the relaxation, we construct a rank-1 matrix whose permanent lower bounds per(A),
thus showing that rel(A) also well-approximates per(A). Note that in [1] only the
existence of this rank-1 matrix is shown, but in our analysis we provide an explicit
construction of a rank-1matrixwhose permanent lower bounds per(A). This combined
with the diagonal matrix in (4) whose permanent upper-bounds per(A) certifies the
approximation. In Sect. 5 we explore reasons why the convex relaxation of (1) is
equivalent to rel(A). We conjecture that (1) is itself a n!

nn approximation to per(A),
explain why it is an analogue of van der Waerden’s conjecture, and show that it is
implied by another long-standing permanent conjecture.

2 Preliminaries

For any x ∈ C, let x∗ be its complex conjugate, and |x |2 = xx∗. For any matrix A ∈
C
n×m , let A† = (A∗)T be its conjugate transpose. Given a, b ∈ C

n , let 〈a, b〉 = a†b
be the inner product on the Hilbert space Cn , and ‖a‖2 = 〈a, a〉. Let SC(n) = {x ∈
C
n | ‖x‖2 = n} be the complex sphere in n dimensions of radius

√
n. A matrix A is

Hermitian if A = A†, and is Hermitian positive semidefinite (HPSD) if in addition
x†Ax ≥ 0 for all x ∈ C

n . We can also denote this as A � 0. The � operator induces
a partial order called the Löwner order, where A � B if A − B � 0. If A � 0,
it can be factorized as A = L†L , where L ∈ C

n×n (for example by the Cholesky
decomposition).

2.1 Circularly-symmetric gaussian random variables

In this paper wewill use a few results involving vectors of circularly-symmetric valued
Gaussian variables.

Definition 2.1 (Circularly-symmetric Gaussian random vector) The complex-valued
Gaussian random variable Z = Zr + i Zc is circularly-symmetric if Zr and Zc are
i.i.d. drawn from N (0, 1

2 ). The random vector Z = [Z1, . . . , Zn]T is drawn from the
distribution CN (0, �) if Zi are i.i.d. circularly-symmetric Gaussians and E[ZZ†] =
�.

The name circularly-symmetric comes from the fact that Z is invariant under rotations
in the complex plane,meaning that eiθZ has the same distribution asZ for all real θ . All
complex multivariate Gaussians in this paper are circularly symmetric. Similar to real
multivariate Gaussians, a linear transform on the random vector induces a congruence
transform on the covariance matrix.

Proposition 2.2 (Linear transformations of complex multivariate Gaussians) Given
Z ∼ CN (0, �) and any complex matrix A, AZ is also circularly symmetric and has
the distribution CN (0, A�A†).
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The proof of this proposition and more about complex multivariate Gaussians can be
found in [6]. In particular, this tells us that Z ∼ CN (0, I ) is invariant under unitary
transformations.

In the analysis of our rounding procedure, we use some results about the gamma
distribution.

Fact 2.3 (Expectation of log of gamma random variable) Let X ∼ Gamma(α, β) be
drawn from the gamma distribution, with density p(x;α, β) = 	(α)−1βαxα−1e−βx .
Then

E[log X ] = ψ(α) − log(β),

where ψ(x) = d
dx log	(x) is the digamma function.

This follows from the fact that the gamma distribution is an exponential family, and
log x is a sufficient statistic (see section 2.2 of [10] for more details). Next we prove
a useful identity.

Fact 2.4 Let [z1, . . . , zr ]T ∼ CN (0, Ir ), Hn = ∑n
k=1

1
k be the n-th harmonic number

and γ = limn→∞(Hn − log n) be the Euler-Mascheroni constant. Then

E log

(
1

r

r∑

i=1

|zi |2
)

= Hr−1 − γ − log(r) = Lr − γ.

Proof
∑r

i=1 2 |zi |2 is distributed as a chi-squared distribution with 2r degrees of free-
dom, which is equivalent to Gamma

(
r , 1

2

)
. Using Fact 2.3, E log

(∑r
i=1 |zi |2

) =
ψ(r). Since ψ(1) = −γ by Gauss’s digamma theorem, the recurrence relation of the
gamma function shows that for all positive integers r , ψ(r) = Hr−1 − γ . ��
Integrating a homogeneous polynomial over the complex sphere is equivalent to taking
its expectation with respect to x ∼ CN (0, I ), up to a correction factor. This factor can
be found by computing moments of a chi-squared distribution.

Fact 2.5 Let p(x) be a degree d homogeneous polynomial in n variables, μn(x) be
the measure associated with the random variable x ∼ CN (0, In). Then

∫

Cn

|p(x)|2 dμn(x) = (n + d − 1)!
nn(n − 1)!

∫

SC(n)

|p(x)|2 dx .

2.2 Permanent of HPSDmatrices

One remarkable property of the permanent of HPSD matrices is that it respects the
Löwner order. See section 2.3 of [1] for a proof.

Proposition 2.6 If A � B � 0, then per(A) ≥ per(B) ≥ 0.

We can efficiently compute the permanent of rank-1 matrices. The following propo-
sition immediately follows from the definition of the permanent in (3).
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Proposition 2.7 For any v ∈ C
n, per(vv†) = n!∏n

i=1 |vi |2.
The permanent of HPSD matrices also has an integral representation using complex
multivariate Gaussians. See section 4 of [3] for more details and a proof.

Proposition 2.8 Let μn(x) be the measure associated with the random variable x ∼
CN (0, In), and SC(n) be the complex (n − 1)-sphere with radius

√
n. For any HPSD

A = V †V , where vi are the columns of V ,

per(A) =
∫

Cn

n∏

i=1

|〈vi , x〉|2 dμn(x) = (2n − 1)!
nn(n − 1)!

∫

SC(n)

n∏

i=1

|〈vi , x〉|2 dx .

3 Convex relaxation and rounding

In this section we analyze the convex relaxation (2) and a natural rounding algorithm
for maximizing a product of linear forms over the complex sphere.

Remark 3.1 Both r(A) and rel(A) are independent of the factorization of A = V †V .
This is because any two different factorizations of A = V †

1 V1 = V †
2 V2 are related by

a unitary transform V1 = UV2 for some unitary matrix U 1. This induces a change of
variables x �→ U †x in (1) but does not change the value of r(A).

Lemma 3.2 Any A � 0 can be factorized as A = V †V , where vi are the columns of
V . Consider the following pair of convex programs:

μ∗(A) ≡ min λn s.t.

⎧
⎨

⎩

V Diag(α)V † 
 λIn∏n
i=1 αi ≥ 1

αi > 0
(5)

ν∗(A) ≡ max
n∏

i=1

v
†
i Pvi s.t.

⎧
⎨

⎩

Tr(P) = n
P† = P
P � 0

(6)

Then r(A) ≤ ν∗(A) = μ∗(A), thus the convex programs are relaxations of r(A) (see
Eq. (1)).

Proof If we add a rank-1 constraint to (6), we get (1), showing that r(A) ≤ ν∗(A).
Suppose we have feasible solutions λ, αi and P to (5) and (6) respectively. Then

n∏

i=1

v
†
i Pvi =

n∏

i=1

αiv
†
i Pvi ≤

(
1

n

n∑

i=1

αiv
†
i Pvi

)n

≤
(
Tr(P)λ

n

)n

= λn,

showing weak duality, i.e. ν∗(A) ≤ μ∗(A). Since (6) comes from taking the dual
of (5) and has a strictly feasible solution, strong duality holds, i.e. ν∗(A) = μ∗(A).
If P = xx† is rank-1, then v

†
i Pvi = |〈x, vi 〉|2, thus in (6) the variable P can be

interpreted as the convex relaxation of the rank-1 constraint in (1). ��
1 We are assuming here that V1, V2 ∈ C

n×n even if rank(A) < n, padding with zero columns if necessary.
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Although (5) and (6) have non-linear objective functions and are not semidefinite
programs in standard form, the geometric mean constraint/objective in them can be
converted to second-order conic constraints after a change of variables [11]. They
can also be solved efficiently with convex programming techniques such as interior
point methods (see [15]). Our main result (Theorem 4.4) is proven with the following
analysis of a randomized rounding procedure to the convex relaxation of the product
of linear forms. This produces a vector that gives an e−nLr -approximation to (1).

Theorem 3.3 Given a matrix A � 0, let ν∗(A) be the optimum of (6), with optimum
achieved by P∗ = UU †. Suppose P∗ has rank r , therefore U ∈ C

n×r . If we produce
a vector y ∈ SC(n) using the following procedure:

1. Sample z ∈ C
r uniformly at random from the complex multivariate Gaussian

CN (0, Ir )
2. Return the normalized vector y = √

nUz/ ‖Uz‖
Recalling that Lr = Hr−1− log r , we have the following lower bound on the expected
value of the objective:

E
z

[
n∏

i=1

|〈vi , y〉|2
]

≥ e−nLr ν∗(A)

Proof We use Jensen’s inequality to bound the expectation:

E
z

[
n∏

i=1

n |〈vi ,Uz〉|2
‖Uz‖2

]
= E

z

[
exp

(
n∑

i=1

(log |〈vi ,Uz〉|2 − log z†U †Uz + log n)

)]

≥ exp

(
n∑

i=1

(E
z
log |〈vi ,Uz〉|2 − E

z
log z†U †Uz + log n)

)

We can exactly compute the first expectation:

E
z
log |〈vi ,Uz〉|2 = log v

†
i UU †vi + E

z
log

∣∣∣
〈
U †vi/

∥∥∥U †vi

∥∥∥ , z
〉∣∣∣
2

= log v
†
i UU †vi + E

z
log |z1|2

= log v
†
i P

∗vi − γ

Where the first equality follows from normalizing U †vi , the second equality fol-
lows from the rotational symmetry of the complex multivariate Gaussian since
U †vi/

∥∥U †vi
∥∥ is a unit vector, and the third equality follows from Fact 2.4 for r = 1.

Let λ1, . . . , λr be the eigenvalues of U †U . Then

E
z
log z†U †Uz = E

z
log

(
r∑

i=1

λi |zi |2
)

≤ E
z
log

(
n

r

r∑

i=1

|zi |2
)

= Hr−1 − γ + log
(n
r

)
,
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where the first equality follows from the invariance of the complex multivari-
ate Gaussian under unitary transformations (see Proposition 2.2), and the second
equality follows from Fact 2.4. Next we prove the inequality. Since Tr(U †U ) =
Tr(P∗) = n, λ = (λ1, . . . , λr ) lies on the scaled r -simplex. The function λ �→
Ez log

(∑r
i=1 λi |zi |2

)
is concave on the scaled r -simplex and is symmetric with

respect to all permutations of the coordinates of λ, therefore it is maximized when all
λi = n

r . Finally we put the above together, along with the fact that
∏n

i=1 v
†
i P

∗vi =
ν∗(A), to prove the theorem. ��

4 Approximating the permanent

We present a new analysis of the relaxation of the permanent of HPSDmatrices in [1].
First we show that rel(A) is a relaxation of per(A).

Lemma 4.1 Given any A � 0,

per(A) ≤ rel(A).

Proof Using the monotonicity of the permanent with respect to the Löwner order
(Proposition 2.6), A 
 D implies that per(A) ≤ per(D). Since D is diagonal,
per(D) = ∏

i Dii , showing that the permanent is always bounded by rel(A). ��
Next we show that rel(A) is equivalent to the convex relaxation of (1).

Lemma 4.2 Recall that μ∗(A) = ν∗(A) is the optimal value of the convex relaxation
in Lemma 3.2. Then

rel(A) = μ∗(A) = ν∗(A).

Proof By a scaling argument, the optimum of (5) is achieved when
∏

i αi = 1. Taking
Schur complements, V Diag(α)V † 
 λIn is equivalent to λDiag(α)−1 � V †V = A.
Thus by making the substitution Dii = λ/αi and noting that

∏
i Dii = λn , we show

that rel(A) = μ∗(A). ��
The following lemma shows that given any vector y ∈ SC(n) returned by the rounding
algorithm, we can construct a lower bound on per(A).

Lemma 4.3 Given HPSD A = V †V ∈ C
n×n, where vi are columns of V , and a vector

y ∈ SC(n),

n!
nn

n∏

i=1

|〈vi , y〉|2 ≤ per(A).

Proof Since ‖y‖2 = n, yy† 
 nI and V †yy†V 
 nV †V . Thus n−n per(V †yy†V ) ≤
per(V †V ) = per(A). SinceV †yy†V is a rank-1matrix, its permanent isn!∏i |〈vi , y〉|2
by Proposition 2.7. ��
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Nowwe can state our result about approximating the permanent of a HPSDmatrix.

Theorem 4.4 Given a HPSD matrix A ∈ C
n×n, rel(A) is a relaxation of per(A)

computable in polynomial-time by convex programs (5) or (6). Let r be the rank of
P∗, the solution to (6). Then rel(A) is an n!

nn e
−nLr -approximation to per(A):

n!
nn

e−nLr rel(A) ≤ per(A) ≤ rel(A) (7)

Next we state a result that we will use to bound the rank of P∗.

Lemma 4.5 (Theorem 2.2 in [2]) Suppose there is a non-zero solution X to the system
of equations {X � 0,Tr(Ai X) = bi , i = 1, . . . , d}, where Ai is Hermitian and
bi ∈ C. If d < (r + 1)2, then one can find in polynomial time another solution X ′
where rank(X ′) = r .

We can now prove Corollary 1.2.

Proof of Corollary 1.2 Given a solution P to (6), any HPSD matrix P ′ that satisfy the
n + 1 equalities Tr(viv

†
i P

′) = v
†
i Pvi and Tr(P ′) = n will have the same objective

value as that of P . Applying Lemma 4.5, we can find in polynomial time an optimal
solution P∗ with rank(P∗) ≤ O(

√
n). We then apply Theorem 4.4. ��

Finally we prove Theorem 4.4.

Proof of Theorem 4.4 We use the vector y produced in the rounding procedure in The-
orem 3.3 to construct a rank-1 matrix V †yy†V . We then compare the permanent of
this matrix to per(A) and rel(A):

n!
nn

e−nLr rel(A)
1= n!
nn

e−nLr ν∗(A)
2≤ n!
nn

E

[
n∏

i=1

|〈vi , y〉|2
]

3≤ per(A)
4≤ rel(A)

1. Apply Lemma 4.2.
2. Apply Theorem 3.3.
3. Lemma 4.3 shows that for any vector y ∈ SC(n), per(A) ≥ n!

nn
∏n

i=1 |〈vi , y〉|2. This
is also true when taking an expectation of any distribution supported on SC(n).

4. Apply Lemma 4.1.

��

4.1 Low rank instances

There are structured classes of HPSD matrices where we can prove a priori that the
rank of P∗ is low and thus a better approximation ratio can be obtained. For example,
it is easy to show that rank(P∗) ≤ rank(A). Often such instances also have additional
symmetry, such as the class of circulant matrices.
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Fig. 1 Plot of average of rank(P∗) (along with error bars indicating standard deviation) of 50 random
instances as a function of n. A = V †V is constructed by sampling each entry of V ∈ R

n×n from a standard
Gaussian. The theoretical upper bound for rank(P∗) in Lemma 4.5 is also shown for comparison

Corollary 4.6 A square matrix is circulant if each row is cyclically shifted one position
to the right compared to the previous row. If A ∈ C

n×n is HPSD and circulant, then
there is a solution P∗ to (6) where rank(P∗) = 1 and we have the bound

n!
nn

rel(A) ≤ per(A) ≤ rel(A).

Proof Since A = V †V is circulant it is invariant under the map Ai, j �→
A(i+1 mod n),( j+1 mod n). Suppose we have an optimal solution D∗ to rel(A) in (4),
where D∗ is a diagonal matrix satisfying A 
 D∗. We then average over all cyclic
shifts of D∗ to show that D = λI is also optimal, which corresponds to αi = 1 in (5),
with an optimal solution P of (6) satisfying the complementary slackness condition
of Tr(PVV †) = nλ. This shows that P = vv† is also a solution, where v is a suitable
multiple of the top eigenvector of VV †. ��

We also observed experimentally that rank(P∗) is small for random A. Figure 1
plots this rank as a function of n, for instances of A drawn from theGaussian orthogonal
ensemble. The results suggest that rank(P∗) for these random instances grows slower
than O(

√
n).

5 A conjecture

Our analysis of rel(A) was inspired by the optimization problem (1), maximizing a
product of linear forms over the complex sphere. We conjecture that the exact solution
to this optimization problem is a tighter relaxation of the permanent.

Conjecture 5.1 Given A = V †V , where vi are the columns of V , recall that r(A) is
the maximum of a product of linear forms as defined in (1). Then

n!
nn

r(A) ≤ per(A) ≤ r(A). (8)
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If the matrix A is scaled so that r(A) = 1, then (8) is exactly the same bounds given by
the van der Waerden’s conjecture for doubly stochastic matrices (proved by [4,5,8]).
The lower bound follows from Lemma 4.3, but the upper bound cannot be proven by
naively applying Proposition 2.8 and bounding the integral over the complex sphere
by its maximum. However, we can show that the upper bound is implied by another
conjecture on permanents:

Conjecture 5.2 (Pate’s conjecture [12]) Given any n × n HPSD matrix A, let A ⊗ Jk
be the Kronecker product of A with the k × k all-ones matrix. Then

per(A ⊗ Jk) ≥ per(A)k(k!)n . (9)

This conjecture has been proved in the case where n = 2, see [16] for a survey
of subsequent progress on this conjecture. Using the integral representation of the
permanent (Proposition 2.8), we can write (9) as:

E
x∼CN (0,In)

[
n∏

i=1

|〈vi , x〉|2k
]1/k

≥ per(A) E
x∼CN (0,In)

[
n∏

i=1

|xi |2k
]1/k

Since both expectations are taken over homogeneous polynomials of degree d, we can
apply Fact 2.5, take k → ∞ and get:

max
‖x‖2=n

n∏

i=1

|〈vi , x〉|2 ≥ per(A) max
‖x‖2=n

n∏

i=1

|xi |2 = per(A).

6 Discussion and conclusion

There are a few interesting directions that stem from this work. For random A (i.e.
drawn from the Gaussian orthogonal ensemble), numerical experiments in Sect. 4.1
suggest that rank(P∗) is very small compared to

√
n. It would be interesting to pro-

vide concrete bounds on the rank of random instances. One might also ask if we
can construct sequences of matrices Ak of increasing size but with fixed rank r , where
(rel(Ak)/ per(Ak))

1/n → e1+Lr . This is related to the question called the linear polar-
ization constant of Hilbert spaces, see [13] for such a construction and its analysis.

The main result of this paper uses the connection between the permanent and the
optimization of a product of linear forms over the sphere (1). Although it is natural
to conjecture the hardness of computing r(A), we do not know of any formal results
establishing this. We also proposed Conjecture 5.1 which would explain why this
optimization problem is intimately related to the permanent. Better understanding of
this problem may lead to further insights about the permanent of HPSD matrices.

Acknowledgements This work was partially supported by NSF AF 1565235.
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...

r r + 1 r + 2

Δr

Δr+1

y = 1
x

Fig. 2 Illustration of the asymptotics of Lr . r is the area between the curve y = 1
x and the rectangle of

height 1
r+1 . The lower dotted lines are tangent to the curve at r + 1 and r + 2 respectively

Appendix: Asymptotics of the approximation factor

Proposition A.1 For all positive integers r ,

1

2r
< γ − Lr <

r + 2

2r(r + 1)
. (10)

Proof It is easy to see that (10) follows from

1

2(r + 1)
< Hn − log(r) − γ <

1

2r
.

From Fig. 2, we can see that Hn − log(r) − γ = ∑∞
k=r k . The upper bound is given

by computing the sum of the areas of the larger triangles:

∞∑

k=r

k <

∞∑

k=r

1

2

(
1

k
− 1

k + 1

)
=

∞∑

k=r

1

2k(k + 1)
= 1

2r

The lower bound is given by computing the sum of the areas of the smaller triangles:

∞∑

k=r

k >

∞∑

k=r

1

2

1

(k + 1)2
>

∞∑

k=r

1

2(k + 1)(k + 2)
= 1

2(r + 1)

��
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