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Introduction

Diffusion models achieve state-of-the-art results in multiple domains such as:

Image generation Trajectory planning

A powerful generative framework for sampling from multimodal distributions
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Motivation

Diffusion models are motivated by probabilistic models

Reversal of stochastic process that adds noise to data (Ho et.al. 2020)

Sampling of data distribution using score function (Song et.al. 2021)

However, commonly used sampling procedures (e.g. DDIM) are deterministic
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Motivation

Given commonly used diffusion training and sampling algorithms,

Is there a deterministic model that motivates the same algorithms?

Can we make reasonable assumptions on learned NN model to analyze
performance of sampling algorithm?

Our optimization-based interpretation:

Denoising approximates projection under manifold hypothesis

Diffusion sampling finds projection to data manifold by minimizing distance
via gradient descent
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Training diffusion models

Denoising diffusion models estimate a noise vector ϵ ∈ Rn from a given noise level
σ > 0 and noisy input xσ ∈ Rn such that for some x0 in the data manifold K,

xσ ≈ x0 + σϵ

A denoiser ϵθ : Rn × R+ → Rn is learned by minimizing

L(θ) := Ex0,σ,ϵ ∥ϵθ(x0 + σϵ, σ)− ϵ∥2

Visualization of training process

*Note: to get expressions commonly
used in literature, change of coordinates
zt =

√
αtxt , where σ2

t = (1− αt)/αt .
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Distance and projection

The distance function distK : Rn → R to a set K ⊆ Rn, is defined via

distK(x) := inf{∥x − x0∥ : x0 ∈ K}

The projection of x ∈ Rn, is the set of points that attain this distance

projK(x) := {x0 ∈ K : distK(x) = ∥x − x0∥}

Intuitively, projK(x)− x is the direction of steepest
descent (i.e. neg. gradient) of distK(x).

Proposition

Suppose K ⊆ Rn is closed and x /∈ K. If projK(x) is
a singleton, then

∇ 1
2distK(x)

2 = x − projK(x)
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Smoothed distance and approximate projection

Distance function is not differentiable everywhere, ∇distK(x) is not continuous,
thus hard to learn!

Solution: σ-smoothed distance function

distK(x , σ) :=
softminσ2

x0∈K ∥x0 − x∥2 = −σ2 log
(∑

x0∈K exp
(
−∥x0−x∥2

2σ2

))

Smoothed distance function has continuous gradients
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Ideal denoisers

The ideal denoiser is the minimizer of training loss, a function of data distribution
K and noise level σ

ϵ∗ := argmin
ϵθ

Ex0,σ,ϵ ∥ϵθ(x0 + σϵ, σ)− ϵ∥2

For finite K, there is a closed-form solution:

ϵ∗(xσ, σ) =

∑
x0∈K(xσ − x0) exp(−∥xσ − x0∥2 /2σ2)

σ
∑

x0∈K exp(−∥xσ − x0∥2 /2σ2)

Plot of direction of ϵ∗(x , σ) for different x and σ
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Ideal denoiser equivalent to gradient of smoothed distance

Theorem

For all σ > 0 and x ∈ Rn, we have

1

2
∇x dist

2
K(x , σ) = σϵ∗(x , σ).

Does ideal denoiser approximate
projection?

We can compute relative error of
learned denoiser v.s. ideal denoiser for
CIFAR-10 dataset

Plot error distribution for 10k different
DDIM sampling trajectories
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Denoising approximates projection: Low noise

Manifold hypothesis: “real-world” datasets are (approximately) contained in
low-dimensional manifolds K of of Rn.

K

x0

tanK(x0)

tanK(x0)
⊥

xσ

projK(xσ)− xσ

Given xσ = x0 + σϵ, most of the added noise lies in NK(x0) with high probability,
thus denoising approximates projection
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Denoising approximates projection: Low noise

The reach of K is the largest τ so that projK(x) is unique when distK(x) ≤ τ

K

x0

tanK(x0)

tanK(x0)
⊥

xσ

projK(xσ)− xσ

Theorem

Fix σ > 0 and suppose that reach(K) ≳ σ
√
n. Given x0 ∈ K and ϵ ∼ N (0, I ), let

xσ = x0 + σϵ. With high probability, we have:

∥projK(xσ)− x0∥ ≲ σ
√
d .
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Denoising approximates projection: High noise

Diffusion models often add large levels of noise to x0 in training, in order to start
sampling from a Gaussian distribution

K
x0

xσ

projK(xσ)− xσ

When σ is large, both denoising and projection point in the same direction
towards K
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Denoising approximates projection

We claim that the denoiser learned from diffusion objective approximates
projection with small relative error

When σ small, manifold hypothesis tells us that most of noise added is
orthogonal to data manifold

When σ large, any weighted mean of data has small relative error

Denoising with ideal denoiser is a σ-smoothing of projK(x) with small
relative error

Next:

Introduce relative error model

Prove that diffusion sampling minimizes distance to data manifold under this
error model
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Sampling from diffusion models (Deterministic)

Given noisy xσ and noise level σ, the learned denoiser ϵθ(xσ, σ) estimates

x0 ≈ x̂0(xσ, σ) := xσ − σϵθ(xσ, σ).

K

x0
x1

x̂ t0

xt(σt−1 − σt)ϵθ(xt)

xt−1

Sampling algorithms (e.g. DDIM) construct a sequence x̂ t0 := x̂0(xt , σt) of
estimates from a sequence of points xt using the update:

xt−1 = xt + (σt−1 − σt)ϵθ(xt , σt)
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Sampling from diffusion models (Probabilistic)

Deterministic (DDIM) update:

xt−1 = xt + (σt−1 − σt)ϵθ(xt , σt)

Probabilistic (DDPM) update:

xt−1 = xt + (σt′ − σt)ϵθ(xt , σt) + ηwt

Where wt ∼ N (0, I ), σt′ = σ2
t−1/σt and η =

√
σ2
t−1 − σ2

t′

(Matches norm of update in expectation if E ∥wt∥2 = ∥ϵθ(xt , σt)∥2)

Note: σt−1 =
√
σtσt′ , thus σt′ < σt−1 < σt .

These iterations look like gradient descent! But on which function?
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Our error model

Let f (x) := 1
2distK(x)

2. Intuitively, ∇f (x) = x − projK(x) ≈ distK(x)ϵθ(x)/
√
n

Assumption (Projection with relative error)

There exists ν ≥ 1 and η ≥ 0 such that if 1
νdistK(x) ≤

√
nσt ≤ νdistK(x) and

∇f (x) exists, then ∥σtϵθ(x , t)−∇f (x)∥ ≤ ηdistK(x).

If
√
nσt closely tracks distK(x), then σtϵθ(x , t) is approximately ∇f (xt)

Relative error model where error depends on distance to K
Implications can be empirically tested on real datasets

DDIM is approximate gradient descent on f with stepsize 1− σt−1

σt
, with

∇f (xt) estimated by ϵθ(xt , σt)
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Intuitions on error model

If
√
nσt closely tracks distK(x), then σtϵθ(x , t) is approximately ∇f (xt)

K

x0
x1

x̂ t0

xt(σt−1 − σt)ϵθ(xt)

xt−1

Projection at large noise levels is relatively inaccurate (tends to return data mean)

Projection at smaller noise levels is more accurate, but denoiser requires xt to
have noise level σt

Relative error assumption captures this intuition
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Analysis under the error model

A schedule is {σt}Nt=0 is (η, ν)-admissible when σt is decreased slow enough to
maintain relative error assumption

Log-linear (geometrically decreasing) schedules are (η, ν)-admissible

σt−1 = (1− β)σt , with β < C (η, ν)

We show convergence under the relative error assumption

Theorem (DDIM with relative error)

Let xt denote the sequence generated by DDIM and suppose that the gradient of
f (x) := 1

2distK(x)
2 exists for all xt . Then for all t:

1
νdistK(xt) ≤

√
nσt ≤ νdistK(xt),

distK(xN)
∏N

i=t(1−βi (η+1)) ≤ distK(xt−1) ≤ distK(xN)
∏N

i=t(1+βi (η−1)).

Admissible schedule =⇒ Control of relative error =⇒ distK decreases
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Improving sampling by gradient estimation

Our error model asserts that ϵθ(x , σ) ≈
√
n∇distK(x) when distK(x) ≈

√
nσ.

Since ∇distK(x) is invariant between x and
projK(x), we aim to minimize estimation error√
n∇distK(x)− ϵθ(xt , σt), with the update

ϵ̄t = ϵθ(xt+1) + γ(ϵθ(xt)− ϵθ(xt+1))

Replaces ϵθ(xt , σt) in sampling algorithm

Corrects for error made in previous step using
current estimate

xt+1

xt

ϵθ(xt+1)

ϵθ(xt)

ϵ̄

K

Illustration of our choice of ϵ̄t

Empirically, γ = 2 achieves best results across many datasets and number
of sampling steps
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Improved sampling algorithm

Given (σN , . . . , σ0), xN ∼ N (0, I ) and ϵθ, to compute x0 with N evaluations of ϵθ:

Algorithm 1 DDIM sampler

for t = N, . . . , 1 do
xt−1 ← xt + (σt−1 − σt)ϵθ(xt , σt)

return x0

Algorithm 2 Our sampler

xN−1 ← xN +(σN−1−σN)ϵθ(xN , σN)
for t = N − 1, . . . , 1 do

ϵ̄t ← 2ϵθ(xt , σt)− ϵθ(xt+1, σt+1)
xt−1 ← xt + (σt−1 − σt)ϵ̄t

return x0
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Experiments on noise schedule

How should we choose σt? Relative noise model suggests log-linear schedule

Plot of different choices of log(σt) for
N = 10.

Schedule CIFAR-10 CelebA

DDIM 16.86 18.08
DDIM Offset 14.18 15.38
EDM 20.85 16.72
Ours 13.25 13.55

FID scores of the DDIM sampler with
different σt schedules on the CIFAR-10
model for N = 10 steps.

Chenyang Yuan (Toyota Research Institute) Diffusion approximates projection Friday 14th June, 2024 21 / 25



Sampler comparison experiments (Visual)

Visualizing x̂ t0 throughout the denoising process:

A comparison of our sampler with DDIM on the CelebA dataset with N = 5 steps.
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Sampler comparison experiments (FID)

CIFAR-10 FID CelebA FID
Sampler N = 5 N = 10 N = 20 N = 50 N = 5 N = 10 N = 20 N = 50

Ours 12.57 3.79 3.32 3.41 10.76 4.41 3.19 3.04
DDIM 47.20 16.86 8.28 4.81 32.21 18.08 11.81 7.39

PNDM 13.9 7.03 5.00 3.95 11.3 7.71 5.51 3.34
DPM 6.37 3.72 3.48 5.83 2.82 2.71
DEIS 18.43 7.12 4.53 3.78 25.07 6.95 3.41 2.95
UniPC 23.22 3.87
A-DDIM 14.00 5.81* 4.04 15.62 9.22* 6.13

FID scores of our sampler compared to that of other samplers for pretrained CIFAR-10
and CelebA models with a discrete linear schedule. *Results for N = 25
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Comparison on latent diffusion models

Ours UniPC DPM++ PNDM DDIM
FID 13.77 15.59 15.43 19.43 14.06

Example outputs on text-to-image Stable Diffusion when limited to N = 10 function
evaluations. FID scores for text-to-image generation on MS-COCO 30K.
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Conclusion

Elementary deterministic framework for analyzing and generalizing diffusion
models

Simplified exposition of existing algorithms and methods

New fast and simple-to-implement sampler designed with our interpretation

Framework for incorporating ideas from optimization into diffusion models

Constraining diffusion models ↔ constrained optimization

Use diffusion models in optimization problems (e.g. as a regularizer for
compressed sensing)
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