Hidden Convexity and Benign Non-Convex Landscapes ICCOPT 2025

Chenyang Yuan (Joint with Benoît Legat)

Toyota Research Institute

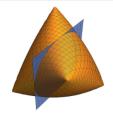
Wednesday 30th July, 2025

Introduction

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

Positive semidefinite variable $X \succeq 0$ + linear constraints

Many problems admit SDP relaxations by relaxing low-rank contraints: $X = UU^{\top}$ to $X \succeq 0$.



This talk: connections between two areas of low-rank SDP research

Hidden Convexity:

- Study image of low-rank manifold under structured linear maps
- When are relaxations of low-rank problems exact?

Benign landscape of Burer-Monteiro method:

- Solve SDPs fast using non-convex low-rank formulation
- Will these first-order methods get stuck in local minima?

Using SDPs for Low-Rank Relaxations

Let S_+^k be the space of $k \times k$ PSD matrices.

We define the following linear map $A: S^k \to \mathbb{R}^m$:

$$A(X) = (\langle A_1, X \rangle, \ldots, \langle A_m, X \rangle)$$

 $A(S_{+}^{k})$ is a convex set representable by a SDP

Deciding membership $b \in A(S_+^k)$ is equivalent to feasibility of SDP

$$b = A(X), X \succeq 0$$

Let S_r^k be the space of rank-r PSD matrices

 $A(S_r^k)$ is non-convex in general, $A(S_+^k)$ is its convex hull

Hidden Convexity and Exactness of Relaxations

We say that A has rank-r hidden convexity if following set is convex

$$A(S_+^k) = \left\{ A(X) \mid X \in S_+^k \right\} = \left\{ A(UU^\top) \mid U \in \mathbb{R}^{k \times r} \right\} = A(S_r^k)$$

Example: Hidden convexity of the map $A(X) = (\langle C, X \rangle, \langle I, X \rangle)$: $A(S_+^k) = A(S_1^k)$

$$\max_{X} \langle C, X \rangle \qquad \max_{X} x^{\top} Cx$$
 s.t. $\text{Tr}(X) = 1$ is equivalent to
$$x \geq 0$$
 s.t. $\|x\|^2 = 1$
$$x \in \mathbb{R}^k$$

SDP relaxation for computing top singular vector is exact

Examples of Hidden Convexity: Barvinok-Pataki bound

Dines' Theorem: When $A(X) = (\langle C_1, X \rangle, \langle C_2, X \rangle)$ (for any symmetric C_1, C_2), A has rank-1 hidden convexity:

$$\left\{ \left(x^{\top}C_{1}x, x^{\top}C_{2}x\right) \mid x \in \mathbb{R}^{k} \right\} = \left\{ \left(\left\langle C_{1}, X \right\rangle, \left\langle C_{2}, X \right\rangle\right) \mid X \succeq 0 \right\}$$

This can be generalized with the Barvinok-Pataki bound:

When $A(X) = (\langle C_1, X \rangle, \dots, \langle C_m, X \rangle)$, then A has rank-r hidden convexity when:

$$r \ge \left\lfloor (\sqrt{8m+1} - 1)/2 \right\rfloor$$

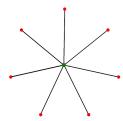
Examples of Hidden Convexity: Sparse SDPs

Suppose C_i have an aggregated sparsity pattern in terms of graph G = (V, E)

$$A(X)=(\langle C_1,X\rangle,\ldots,\langle C_m,X\rangle)$$
 has rank- $\alpha(G)$ hidden convexity [Laurent, Varvitsiotis 2014]

$$\alpha(G) \leq \mathsf{treewidth}(G) + 1$$

Example: When sparsity pattern is a tree, A(X) has rank-2 hidden convexity



Examples of Hidden Convexity: Sum of Squares Polynomials

Let $b(x) \in \mathbb{R}^n$ be a basis of $\mathbb{R}[x]_{n,d}$: polynomials in n variables of degree $\leq d$.

A(X) is a map extracting the coefficients of the polynomial $b(x)^{\top}Xb(x)$

Example for $\mathbb{R}[x]_{1,2}$: $b(x) = [1, x, x^2]$,

$$b(x)^{\top} X b(x) = \left\langle \begin{bmatrix} 1 & x & x^{2} \\ x & x^{2} & x^{3} \\ x^{2} & x^{3} & x^{4} \end{bmatrix}, \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{12} & X_{22} & X_{23} \\ X_{13} & X_{23} & X_{33} \end{bmatrix} \right\rangle$$
$$A(X) = \left(X_{11}, \frac{1}{2} X_{12}, \frac{1}{3} (X_{13} + X_{22}), \frac{1}{2} X_{23}, X_{33} \right)$$

The following are equivalent:

$$p(x) \in \Sigma[x]_{n,2d} \Leftrightarrow p(x) = b(x)^{\top} X b(x), X \succeq 0 \Leftrightarrow \operatorname{coeff}(p) \in A(S_{+}^{k})$$

Rank of X = the number of squares in sum of squares decomposition

Pythagoras Numbers

Pythagoras number $\pi(n,d)$: Smallest r so that all polynomials in $\Sigma[x]_{n,2d}$ can be written as sum of r squares in $\mathbb{R}[x]_{n,d}$.

	n = 1	n = 2	n = 3	n = 4
d = 1	2 [2, 2]	3 [3, 3]	4 [4, 4]	5 [5, 5]
d = 2	2[2,2]	3 [3, 5]	5 [5, 7]	?[6,11]
d = 3	2[2,3]	4 [4, 7]	? [5, 12]	? [7, 20]
d = 4	2 [2, 3]	5 [4, 9]	? [5, 17]	? [8, 30]

Table: Known values of $\pi(n, d)$ [general lower and upper bounds]

- Univariate polynomials $\pi(1,d)=2$, quadratic forms $\pi(n,1)=n+1$
- Ternary quartics $\pi(2,2) = 3$ [Hilbert 1888]
- $\pi(2,3) = 4$, $\pi(3,2) = 5$ [Scheiderer 2017]
- $\pi(2, d) = d + 1$ for d = 4, 5, 6 [Blekherman, Dunbar, Sinn 2024]

A(X) for sum of squares decomposition of $\Sigma[x]_{n,2d}$ has rank- $\pi(n,d)$ hidden convexity

Burer-Monteiro Factorization and Optimization Landscape

Given $A: S^n \to \mathbb{R}^m$ and $b \in \mathbb{R}^m$, find $X \in S_r^n$ so that A(X) = b.

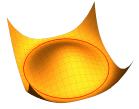
We enforce PSD constraint via factorization $X = UU^{\top}$

$$\min_{U\in\mathbb{R}^{n\times r}}f_b(U):=\left\|A(UU^\top)-b\right\|^2.$$

This problem is non-convex in terms of U, to be solved with first-order optimization algorithms.

Is the landscape benign or can we get stuck in local minima?

OR



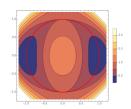
Optimality Conditions

If U is a second-order critical point of $f_b(U)$, the following conditions must hold for all $V \in \mathbb{R}^{n \times r}$:

$$\langle A(UV^{\top}), A(UU^{\top}) - b \rangle \sim \nabla f_b(U)(V) = 0$$

$$\langle A(VV^{\top}), A(UU^{\top}) - b \rangle + 2 \|A(UV^{\top})\|^2 \sim \nabla^2 f_b(U)(V, V) \ge 0$$

First-order critical points ⊃ Second-order critical points ⊃ · · · ⊃ Local minima



First order methods (i.e. gradient descent) converge to second-order critical points

If second-order critical point \implies global minima, then gradient descent converges to global minimum, landscape benign

Prior Work and Our Contribution

Benign landscape for general SDPs: $r \gtrsim \sqrt{m}$ with generic constraints [Cifuentes & Moitra 2019] or smoothed analysis [Bhojanapalli et. al 2018]

Wide body of work for structured SDPs for matrix sensing, synchronization, phase retrieval problems (see https://sunju.org/research/nonconvex)

[Zhang 2021] showed that searching for spurious local minima, for fixed spurious point and fixed ground truth in matrix sensing problems, can be formulated as a SDP

Rest of the talk:

- Show that hidden convexity enables search over counterexamples for only fixed spurious point
- ullet Find counterexamples (lower-bounds on r) by systematically searching over spurious points
- Analyzing dual formulation leading to proof strategies

Certifying Optimality Conditions with SDPs

Proposition

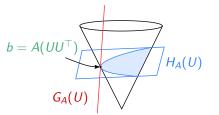
If A has hidden-convexity of rank-r, then for fixed U, we can certify using a SDP that $f_b(U) = \|A(UU^\top) - b\|^2$ has no spurious SOCP for all $b \in A(S_r^k)$

Suffice to show that the following sets only intersect at $b = A(UU^{\top})$

$$G_{A}(U) := \left\{ b \in \mathbb{R}^{m} \mid \nabla f_{b}(U)(V) = 0, \forall V \in \mathbb{R}^{k \times r} \right\}$$

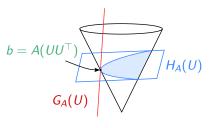
$$H_{A}(U) := \left\{ b \in \mathbb{R}^{m} \mid \nabla^{2} f_{b}(U)(V, V) \geq 0, \forall V \in \mathbb{R}^{k \times r} \right\}$$

$$A(S_{r}^{k}) := \left\{ A(VV^{\top}) \in \mathbb{R}^{m} \mid \forall V \in \mathbb{R}^{k \times r} \right\}$$



These are all *convex sets* when *A* has rank-*r* hidden convexity!

Certifying Optimality Conditions with SDPs



$$H_A^1: \mathbb{R}^m \to \mathbb{R}^{kr imes kr}$$
 a linear map: $\operatorname{vec}(V)^\top H_A^1(a) \operatorname{vec}(V) := \left\langle A(VV^\top), a \right\rangle$ $H_A^2 = \mathbb{R}^{kr imes kr}$ a quadratic form:

 $\operatorname{vec}(V)^{\top} H_{AU}^2 \operatorname{vec}(V) := 2 \|A_U(V)\|^2$

We pick random direction c and check if the following SDP has optimum > 0

$$\max_{b} \langle c, A(UU^{\top}) - b \rangle$$

$$\exists b, \gamma \text{ s.t. } \langle c, b \rangle = 1$$

$$\text{s.t. } A_{U}^{*}(A(UU^{\top}) - b) = 0 \qquad \Leftrightarrow \qquad A_{U}^{*}(\gamma A(UU^{\top}) - b) = 0$$

$$H_{A}^{1}(A(UU^{\top}) - b) + H_{A,U}^{2} \succeq 0$$

$$b \in A(S_{r}^{k})$$

$$b \in A(S_{r}^{k})$$

Homogenized version allows us to certify almost surely

Specializing to Sum of Squares

For polynomials, $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_{n,d}^r o \mathbb{R}[x]_{n,2d}$

$$\mathcal{A}_{\mathbf{u}}(\mathbf{v}) := \mathcal{A}_{(u_1,\ldots,u_n)}((v_1,\ldots,v_n)) = \sum_i u_i v_i$$

$$\sigma(\mathbf{u}) := \mathcal{A}_{\mathbf{u}}(\mathbf{u})$$

The objective, first- and second-order optimality conditions:

$$f_{p}(\mathbf{u}) = \|\sigma(\mathbf{u}) - p\|^{2}$$

$$\nabla f_{p}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = 0$$

$$\nabla^{2} f_{p}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle + 2 \|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\|^{2} \ge 0$$

Prior work:

- Benign landscape for univariate polynomials [Legat, Y., Parrilo 2023]
- Generalization to varieties of minimal degree [Blekherman, Sinn, Velasco, Zhang 2024]

Dual Certificates

Stronger formulation for projection onto $\Sigma[x]_{n,2d}$: Show that for all $q \in \Sigma[x]_{n,2d}$, following SDP has objective 0

$$\begin{aligned} \max_{p} \left\langle \sigma(\mathbf{u}) - q, \sigma(\mathbf{u}) - p \right\rangle \\ \text{s.t.} \ \forall \mathbf{v} : \left\langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \right\rangle &= 0 \\ \left\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \right\rangle + 2 \left\| \mathcal{A}_{\mathbf{u}}(\mathbf{v}) \right\|^2 &\geq 0 \end{aligned}$$

Taking the dual:

$$\min_{\mathbf{\lambda}, \mathbf{v}_i \in \mathbb{R}[x]_{n,d}} \sum_{i=1}^k \|\mathcal{A}_{\mathbf{u}}(\mathbf{v}_i)\|^2 \quad \text{s.t.} \quad q - \sigma(\mathbf{u}) = \frac{\mathcal{A}_{\mathbf{u}}(\mathbf{\lambda})}{k} + \sum_{i=1}^k \sigma(\mathbf{v}_i)$$

Proof strategy: exhibit a certificate λ , v_i for every $q \in \Sigma[x]_{n,2d}$, $\mathbf{u} \in \mathbb{R}[x]_{n,d}$

Strong duality may not hold!

Proof for univariate polynomials constructs an *extended dual certificate* [Legat, Y., Parrilo 2023]

Automatic Search for Spurious Second-Order Points

Strategy: Given basis of $\mathbb{R}[x]_{n,d}$, search for **u** over all subsets of size r

Finding the following spurious points \mathbf{u} (where $p = 2x_1^{2d} + \sigma(\mathbf{u})$):

- For n = 2, d = 2, r = 3, $\mathbf{u} = (1, x_2, x_2^2)$
- For $n = 2, d = 3, r = 4, \mathbf{u} = (1, x_2, x_2^2, x_2^3)$
- For $n = 3, d = 2, r = 5, \mathbf{u} = (1, x_2, x_2^2, x_3, x_3^2)$

Generalize examples to following result:

Proposition

For sum of squares decomposition of $\Sigma[x]_{n,2d}$, there are spurious second-order critical points for any $r \leq \dim(\mathbb{R}[x]_{n-1,d})$

n = 2, d = 2 case appeared in [Blekherman, Sinn, Velasco, Zhang 2024]

Proof of spurious second-order points

Let **u** be any orthogonal basis of $\mathbb{R}[x]_{n-1,d}$ and $\sigma(\mathbf{u}) - p = -2x_1^{2d}$

Since ${\bf u}$ does not contain x_1 , in any monomial of ${\cal A}_{\bf u}({\bf v})$, highest degree of x_1 is d

First-order condition holds: $\mathcal{A}_{\mathbf{u}}(\mathbf{v})$ has no x_1^{2d} terms, $\langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = 0$

Write $\mathbf{v} = (c_i x_1^d + \phi_i(x))_{i=1,...,r}$, where $c_i \in \mathbb{R}$ and $\phi_i(x)$ do not have x_1^d terms

$$\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = -2 \sum_{i=1}^{r} c_i^2$$

 $A_{\mathbf{u}}(\mathbf{v})$ has only r distinct monomials containing x_1^d , each with coefficient c_i :

$$2\left\|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\right\|^2 \geq 2\sum_{i=1}^r c_i^2$$

Second-order condition holds: $\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle + 2 \|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\|^2 \ge 0$

Relation to Pythagoras Numbers

Lower bounds on *r* for benign non-convexity:

	n = 1	\geq	n = 2	\geq	n = 3	>	n = 4	<u>></u>
d=1	2 [2, 2]	2	3 [3, 3]	3	4 [4, 4]	4	5 [5, 5]	5
	2 [2, 2]	2	3 [3, 5]	4				11
d = 3	2 [2, 3]	2	4 [4, 7]	5	? [5, 12]	11	? [7, 20]	21
d = 4	2 [2, 3]	2	5 [4, 9]	6	? [5, 17]	16	? [8, 30]	36
d = 5	2 [2, 4]	2	6[4,11]	7	? [6, 23]	22	? [9, 44]	57
<i>d</i> = 6	2 [2, 4]	2	7 [4, 13]	8	? [6, 29]	29	? [9, 59]	85

Only true for univariate polynomials and quadratic forms

Provably higher than $\pi(n, d)$ for most other cases!

Discussion and Conclusion

We showed that hidden convexity enables us to find SDP certificates of no spurious second-order critical point for $\it fixed~U$

Computational search to find counterexamples of hidden convexity not implying benign Burer-Monteiro landscape

Question: Is there a geometric condition on the map A(X) that leads to both hidden convexity and benign non-convex landscape?

Question: Can we automatically find proofs of benign optimization landscapes?