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Introduction
Semidefinite programming (SDP) is a powerful and
expressive convex optimization method

Positive semidefinite variable X ⪰ 0 + linear constraints

Many problems admit SDP relaxations by relaxing
low-rank contraints: X = UU⊤ to X ⪰ 0.

This talk: connections between two areas of low-rank SDP research

Hidden Convexity:

Study image of low-rank manifold under structured linear maps

When are relaxations of low-rank problems exact?

Benign landscape of Burer-Monteiro method:

Solve SDPs fast using non-convex low-rank formulation

Will these first-order methods get stuck in local minima?
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Using SDPs for Low-Rank Relaxations

Let Sk
+ be the space of k × k PSD matrices.

We define the following linear map A : Sk → Rm:

A(X ) = (⟨A1,X ⟩ , . . . , ⟨Am,X ⟩)

A(Sk
+) is a convex set representable by a SDP

Deciding membership b ∈ A(Sk
+) is equivalent to feasibility of SDP

b = A(X ),X ⪰ 0

Let Sk
r be the space of rank-r PSD matrices

A(Sk
r ) is non-convex in general, A(Sk

+) is its convex hull
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Hidden Convexity and Exactness of Relaxations

We say that A has rank-r hidden convexity if following set is convex

A(Sk
+) =

{
A(X ) | X ∈ Sk

+

}
=

{
A(UU⊤) | U ∈ Rk×r

}
= A(Sk

r )

Example: Hidden convexity of the map A(X ) = (⟨C ,X ⟩ , ⟨I ,X ⟩): A(Sk
+) = A(Sk

1 )

max ⟨C ,X ⟩
s.t. Tr(X ) = 1

X ⪰ 0

is equivalent to

max x⊤Cx

s.t. ∥x∥2 = 1

x ∈ Rk

SDP relaxation for computing top singular vector is exact
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Examples of Hidden Convexity: Barvinok-Pataki bound

Dines’ Theorem: When A(X ) = (⟨C1,X ⟩ , ⟨C2,X ⟩) (for any symmetric C1,C2), A
has rank-1 hidden convexity:{

(x⊤C1x , x
⊤C2x) | x ∈ Rk

}
= {(⟨C1,X ⟩ , ⟨C2,X ⟩) | X ⪰ 0}

This can be generalized with the Barvinok-Pataki bound:

When A(X ) = (⟨C1,X ⟩ , . . . , ⟨Cm,X ⟩), then A has rank-r hidden convexity when:

r ≥
⌊
(
√
8m + 1− 1)/2

⌋
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Examples of Hidden Convexity: Sparse SDPs

Suppose Ci have an aggregated sparsity pattern in terms of graph G = (V ,E )

A(X ) = (⟨C1,X ⟩ , . . . , ⟨Cm,X ⟩) has rank-α(G ) hidden convexity [Laurent,
Varvitsiotis 2014]

α(G ) ≤ treewidth(G ) + 1

Example: When sparsity pattern is a tree, A(X ) has rank-2 hidden convexity


∗ ∗ · · · ∗
∗ ∗ · · · 0
...

...
. . .

...
∗ 0 · · · ∗


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Examples of Hidden Convexity: Sum of Squares
Polynomials

Let b(x) ∈ Rn be a basis of R[x ]n,d : polynomials in n variables of degree ≤ d .

A(X ) is a map extracting the coefficients of the polynomial b(x)⊤Xb(x)

Example for R[x ]1,2: b(x) = [1, x , x2],

b(x)⊤Xb(x) =

〈 1 x x2

x x2 x3

x2 x3 x4

 ,

X11 X12 X13

X12 X22 X23

X13 X23 X33

〉

A(X ) =

(
X11,

1

2
X12,

1

3
(X13 + X22),

1

2
X23,X33

)
The following are equivalent:

p(x) ∈ Σ[x ]n,2d ⇔ p(x) = b(x)⊤Xb(x),X ⪰ 0 ⇔ coeff(p) ∈ A(Sk
+)

Rank of X = the number of squares in sum of squares decomposition
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Pythagoras Numbers

Pythagoras number π(n, d): Smallest r so that all polynomials in Σ[x ]n,2d can be
written as sum of r squares in R[x ]n,d .

n = 1 n = 2 n = 3 n = 4

d = 1 2 [2, 2] 3 [3, 3] 4 [4, 4] 5 [5, 5]
d = 2 2 [2, 2] 3 [3, 5] 5 [5, 7] ? [6, 11]
d = 3 2 [2, 3] 4 [4, 7] ? [5, 12] ? [7, 20]
d = 4 2 [2, 3] 5 [4, 9] ? [5, 17] ? [8, 30]

Table: Known values of π(n, d) [general lower and upper bounds]

Univariate polynomials π(1, d) = 2, quadratic forms π(n, 1) = n + 1

Ternary quartics π(2, 2) = 3 [Hilbert 1888]

π(2, 3) = 4, π(3, 2) = 5 [Scheiderer 2017]

π(2, d) = d + 1 for d = 4, 5, 6 [Blekherman, Dunbar, Sinn 2024]

A(X ) for sum of squares decomposition of Σ[x ]n,2d has rank-π(n, d) hidden
convexity
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Burer-Monteiro Factorization and Optimization Landscape

Given A : Sn → Rm and b ∈ Rm, find X ∈ Sn
r so that A(X ) = b.

We enforce PSD constraint via factorization X = UU⊤

min
U∈Rn×r

fb(U) :=
∥∥A(UU⊤)− b

∥∥2 .
This problem is non-convex in terms of U, to be solved with first-order
optimization algorithms.

Is the landscape benign or can we get stuck in local minima?

OR
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Optimality Conditions

If U is a second-order critical point of fb(U), the following conditions must hold
for all V ∈ Rn×r : 〈

A(UV⊤),A(UU⊤)− b
〉
∼ ∇fb(U)(V )= 0〈

A(VV⊤),A(UU⊤)− b
〉
+ 2

∥∥A(UV⊤)
∥∥2 ∼ ∇2fb(U)(V ,V )≥ 0

First-order critical points ⊃ Second-order critical points ⊃ · · · ⊃ Local minima

First order methods (i.e. gradient descent) converge to second-order critical points

If second-order critical point =⇒ global minima, then gradient descent converges
to global minimum, landscape benign
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Prior Work and Our Contribution

Benign landscape for general SDPs: r ≳
√
m with generic constraints [Cifuentes

& Moitra 2019] or smoothed analysis [Bhojanapalli et. al 2018]

Wide body of work for structured SDPs for matrix sensing, synchronization, phase
retrieval problems (see https://sunju.org/research/nonconvex)

[Zhang 2021] showed that searching for spurious local minima, for fixed spurious
point and fixed ground truth in matrix sensing problems, can be formulated as a
SDP

Rest of the talk:

Show that hidden convexity enables search over counterexamples for only
fixed spurious point

Find counterexamples (lower-bounds on r) by systematically searching over
spurious points

Analyzing dual formulation leading to proof strategies
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Certifying Optimality Conditions with SDPs

Proposition

If A has hidden-convexity of rank-r , then for fixed U, we can certify using a SDP

that fb(U) =
∥∥A(UU⊤)− b

∥∥2 has no spurious SOCP for all b ∈ A(Sk
r )

Suffice to show that the following sets only intersect at b = A(UU⊤)

GA(U):=
{
b ∈ Rm | ∇fb(U)(V ) = 0, ∀V ∈ Rk×r

}
HA(U):=

{
b ∈ Rm | ∇2fb(U)(V ,V ) ≥ 0, ∀V ∈ Rk×r

}
A(Sk

r ) :=
{
A(VV⊤) ∈ Rm | ∀V ∈ Rk×r

}

HA(U)

GA(U)

b = A(UU⊤) These are all convex sets when A has
rank-r hidden convexity!
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Certifying Optimality Conditions with SDPs

HA(U)

GA(U)

b = A(UU⊤)

H1
A : Rm → Rkr×kr a linear map:

vec(V )⊤H1
A(a) vec(V ) :=

〈
A(VV⊤), a

〉
H2

A,U ∈ Rkr×kr a quadratic form:

vec(V )⊤H2
A,U vec(V ) := 2 ∥AU(V )∥2

We pick random direction c and check if the following SDP has optimum > 0

max
b

〈
c,A(UU⊤)− b

〉
s.t. A∗

U(A(UU
⊤)− b) = 0

H1
A(A(UU

⊤)− b) + H2
A,U ⪰ 0

b ∈ A(Sk
r )

⇔

∃b, γ s.t. ⟨c , b⟩ = 1

A∗
U(γA(UU

⊤)− b) = 0

H1
A(γA(UU

⊤)− b) + γH2
A,U ⪰ 0

b ∈ A(Sk
r )

Homogenized version allows us to certify almost surely
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Specializing to Sum of Squares

For polynomials, Au : R[x ]rn,d → R[x ]n,2d

Au(v) := A(u1,...,un) ((v1, . . . , vn)) =
∑
i

uivi

σ(u) := Au(u)

The objective, first- and second-order optimality conditions:

fp(u)= ∥σ(u)− p∥2

∇fp(u)(v)∼ ⟨Au(v), σ(u)− p⟩ = 0

∇2fp(u)(v, v)∼ ⟨Av(v), σ(u)− p⟩+ 2 ∥Au(v)∥2 ≥ 0

Prior work:

Benign landscape for univariate polynomials [Legat, Y., Parrilo 2023]

Generalization to varieties of minimal degree [Blekherman, Sinn, Velasco,
Zhang 2024]
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Dual Certificates

Stronger formulation for projection onto Σ[x ]n,2d : Show that for all q ∈ Σ[x ]n,2d ,
following SDP has objective 0

max
p

⟨σ(u)− q, σ(u)− p⟩

s.t. ∀v : ⟨Au(v), σ(u)− p⟩ = 0

⟨σ(v), σ(u)− p⟩+ 2 ∥Au(v)∥2 ≥ 0

Taking the dual:

min
λ,vi∈R[x]n,d

k∑
i=1

∥Au(vi)∥2 s.t. q − σ(u) = Au(λ) +
k∑

i=1

σ(vi)

Proof strategy: exhibit a certificate λ, vi for every q ∈ Σ[x ]n,2d , u ∈ R[x ]n,d

Strong duality may not hold!

Proof for univariate polynomials constructs an extended dual certificate [Legat,
Y., Parrilo 2023]
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Automatic Search for Spurious Second-Order Points

Strategy: Given basis of R[x ]n,d , search for u over all subsets of size r

Finding the following spurious points u (where p = 2x2d1 + σ(u)):

For n = 2, d = 2, r = 3, u = (1, x2, x
2
2 )

For n = 2, d = 3, r = 4, u = (1, x2, x
2
2 , x

3
2 )

For n = 3, d = 2, r = 5, u = (1, x2, x
2
2 , x3, x

2
3 )

Generalize examples to following result:

Proposition

For sum of squares decomposition of Σ[x ]n,2d , there are spurious second-order
critical points for any r ≤ dim(R[x ]n−1,d)

n = 2, d = 2 case appeared in [Blekherman, Sinn, Velasco, Zhang 2024]
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Proof of spurious second-order points

Let u be any orthogonal basis of R[x ]n−1,d and σ(u)− p = −2x2d1

Since u does not contain x1, in any monomial of Au(v), highest degree of x1 is d

First-order condition holds: Au(v) has no x2d1 terms, ⟨Au(v), σ(u)− p⟩ = 0

Write v = (cix
d
1 + ϕi (x))i=1,...,r , where ci ∈ R and ϕi (x) do not have xd1 terms

⟨σ(v), σ(u)− p⟩ = −2
r∑

i=1

c2i

Au(v) has only r distinct monomials containing xd1 , each with coefficient ci :

2 ∥Au(v)∥2 ≥ 2
r∑

i=1

c2i

Second-order condition holds: ⟨σ(v), σ(u)− p⟩+ 2 ∥Au(v)∥2 ≥ 0

Chenyang Yuan (Toyota Research Institute) Hidden Convexity and Benign Landscapes Wednesday 30th July, 2025 17 / 19



Relation to Pythagoras Numbers

Lower bounds on r for benign non-convexity:

n = 1 ≥ n = 2 ≥ n = 3 ≥ n = 4 ≥

d = 1 2 [2, 2] 2 3 [3, 3] 3 4 [4, 4] 4 5 [5, 5] 5
d = 2 2 [2, 2] 2 3 [3, 5] 4 5 [5, 7] 7 ? [6, 11] 11
d = 3 2 [2, 3] 2 4 [4, 7] 5 ? [5, 12] 11 ? [7, 20] 21
d = 4 2 [2, 3] 2 5 [4, 9] 6 ? [5, 17] 16 ? [8, 30] 36
d = 5 2 [2, 4] 2 6 [4, 11] 7 ? [6, 23] 22 ? [9, 44] 57
d = 6 2 [2, 4] 2 7 [4, 13] 8 ? [6, 29] 29 ? [9, 59] 85

Only true for univariate polynomials and quadratic forms

Provably higher than π(n, d) for most other cases!
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Discussion and Conclusion

We showed that hidden convexity enables us to find SDP certificates of no
spurious second-order critical point for fixed U

Computational search to find counterexamples of hidden convexity not implying
benign Burer-Monteiro landscape

Question: Is there a geometric condition on the map A(X ) that leads to both
hidden convexity and benign non-convex landscape?

Question: Can we automatically find proofs of benign optimization landscapes?
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