# Hidden Convexity and Benign Non-Convex Landscapes ICCOPT 2025

Chenyang Yuan (Joint with Benoît Legat)

Toyota Research Institute

Wednesday 30<sup>th</sup> July, 2025



### Introduction

Semidefinite programming (SDP) is a powerful and expressive convex optimization method

Positive semidefinite variable  $X \succeq 0$  + linear constraints

Many problems admit SDP relaxations by relaxing low-rank contraints:  $X = UU^{\top}$  to  $X \succeq 0$ .



### This talk: connections between two areas of low-rank SDP research

### Hidden Convexity:

- Study image of low-rank manifold under structured linear maps
- When are relaxations of low-rank problems exact?

### Benign landscape of Burer-Monteiro method:

- Solve SDPs fast using non-convex low-rank formulation
- Will these first-order methods get stuck in local minima?

# Using SDPs for Low-Rank Relaxations

Let  $S_+^k$  be the space of  $k \times k$  PSD matrices.

We define the following linear map  $A: S^k \to \mathbb{R}^m$ :

$$A(X) = (\langle A_1, X \rangle, \ldots, \langle A_m, X \rangle)$$

 $A(S_{+}^{k})$  is a convex set representable by a SDP

Deciding membership  $b \in A(S_+^k)$  is equivalent to feasibility of SDP

$$b = A(X), X \succeq 0$$

Let  $S_r^k$  be the space of rank-r PSD matrices

 $A(S_r^k)$  is non-convex in general,  $A(S_+^k)$  is its convex hull

### Hidden Convexity and Exactness of Relaxations

We say that A has rank-r hidden convexity if following set is convex

$$A(S_+^k) = \left\{ A(X) \mid X \in S_+^k \right\} = \left\{ A(UU^\top) \mid U \in \mathbb{R}^{k \times r} \right\} = A(S_r^k)$$

Example: Hidden convexity of the map  $A(X) = (\langle C, X \rangle, \langle I, X \rangle)$ :  $A(S_+^k) = A(S_1^k)$ 

$$\max_{X} \langle C, X \rangle \qquad \max_{X} x^{\top} Cx$$
 s.t.  $\text{Tr}(X) = 1$  is equivalent to 
$$x \geq 0$$
 s.t.  $\|x\|^2 = 1$  
$$x \in \mathbb{R}^k$$

SDP relaxation for computing top singular vector is exact

# Examples of Hidden Convexity: Barvinok-Pataki bound

Dines' Theorem: When  $A(X) = (\langle C_1, X \rangle, \langle C_2, X \rangle)$  (for any symmetric  $C_1, C_2$ ), A has rank-1 hidden convexity:

$$\left\{ \left(x^{\top}C_{1}x, x^{\top}C_{2}x\right) \mid x \in \mathbb{R}^{k} \right\} = \left\{ \left(\left\langle C_{1}, X \right\rangle, \left\langle C_{2}, X \right\rangle\right) \mid X \succeq 0 \right\}$$

This can be generalized with the Barvinok-Pataki bound:

When  $A(X) = (\langle C_1, X \rangle, \dots, \langle C_m, X \rangle)$ , then A has rank-r hidden convexity when:

$$r \ge \left\lfloor (\sqrt{8m+1} - 1)/2 \right\rfloor$$

# Examples of Hidden Convexity: Sparse SDPs

Suppose  $C_i$  have an aggregated sparsity pattern in terms of graph G = (V, E)

$$A(X)=(\langle C_1,X\rangle,\ldots,\langle C_m,X\rangle)$$
 has rank- $\alpha(G)$  hidden convexity [Laurent, Varvitsiotis 2014]

$$\alpha(G) \leq \mathsf{treewidth}(G) + 1$$

Example: When sparsity pattern is a tree, A(X) has rank-2 hidden convexity



# Examples of Hidden Convexity: Sum of Squares Polynomials

Let  $b(x) \in \mathbb{R}^n$  be a basis of  $\mathbb{R}[x]_{n,d}$ : polynomials in n variables of degree  $\leq d$ .

A(X) is a map extracting the coefficients of the polynomial  $b(x)^{\top}Xb(x)$ 

Example for  $\mathbb{R}[x]_{1,2}$ :  $b(x) = [1, x, x^2]$ ,

$$b(x)^{\top} X b(x) = \left\langle \begin{bmatrix} 1 & x & x^{2} \\ x & x^{2} & x^{3} \\ x^{2} & x^{3} & x^{4} \end{bmatrix}, \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{12} & X_{22} & X_{23} \\ X_{13} & X_{23} & X_{33} \end{bmatrix} \right\rangle$$
$$A(X) = \left( X_{11}, \frac{1}{2} X_{12}, \frac{1}{3} (X_{13} + X_{22}), \frac{1}{2} X_{23}, X_{33} \right)$$

The following are equivalent:

$$p(x) \in \Sigma[x]_{n,2d} \Leftrightarrow p(x) = b(x)^{\top} X b(x), X \succeq 0 \Leftrightarrow \operatorname{coeff}(p) \in A(S_{+}^{k})$$

Rank of X = the number of squares in sum of squares decomposition

# Pythagoras Numbers

Pythagoras number  $\pi(n,d)$ : Smallest r so that all polynomials in  $\Sigma[x]_{n,2d}$  can be written as sum of r squares in  $\mathbb{R}[x]_{n,d}$ .

|       | n = 1    | n = 2    | n = 3     | n = 4     |
|-------|----------|----------|-----------|-----------|
| d = 1 | 2 [2, 2] | 3 [3, 3] | 4 [4, 4]  | 5 [5, 5]  |
| d = 2 | 2[2,2]   | 3 [3, 5] | 5 [5, 7]  | ?[6,11]   |
| d = 3 | 2[2,3]   | 4 [4, 7] | ? [5, 12] | ? [7, 20] |
| d = 4 | 2 [2, 3] | 5 [4, 9] | ? [5, 17] | ? [8, 30] |

Table: Known values of  $\pi(n, d)$  [general lower and upper bounds]

- Univariate polynomials  $\pi(1,d)=2$ , quadratic forms  $\pi(n,1)=n+1$
- Ternary quartics  $\pi(2,2) = 3$  [Hilbert 1888]
- $\pi(2,3) = 4$ ,  $\pi(3,2) = 5$  [Scheiderer 2017]
- $\pi(2, d) = d + 1$  for d = 4, 5, 6 [Blekherman, Dunbar, Sinn 2024]

A(X) for sum of squares decomposition of  $\Sigma[x]_{n,2d}$  has rank- $\pi(n,d)$  hidden convexity

# Burer-Monteiro Factorization and Optimization Landscape

Given  $A: S^n \to \mathbb{R}^m$  and  $b \in \mathbb{R}^m$ , find  $X \in S_r^n$  so that A(X) = b.

We enforce PSD constraint via factorization  $X = UU^{\top}$ 

$$\min_{U\in\mathbb{R}^{n\times r}}f_b(U):=\left\|A(UU^\top)-b\right\|^2.$$

This problem is non-convex in terms of U, to be solved with first-order optimization algorithms.

Is the landscape benign or can we get stuck in local minima?



OR



# **Optimality Conditions**

If U is a second-order critical point of  $f_b(U)$ , the following conditions must hold for all  $V \in \mathbb{R}^{n \times r}$ :

$$\langle A(UV^{\top}), A(UU^{\top}) - b \rangle \sim \nabla f_b(U)(V) = 0$$

$$\langle A(VV^{\top}), A(UU^{\top}) - b \rangle + 2 \|A(UV^{\top})\|^2 \sim \nabla^2 f_b(U)(V, V) \ge 0$$

First-order critical points ⊃ Second-order critical points ⊃ · · · ⊃ Local minima





First order methods (i.e. gradient descent) converge to second-order critical points

If second-order critical point  $\implies$  global minima, then gradient descent converges to global minimum, landscape benign

### Prior Work and Our Contribution

Benign landscape for general SDPs:  $r \gtrsim \sqrt{m}$  with generic constraints [Cifuentes & Moitra 2019] or smoothed analysis [Bhojanapalli et. al 2018]

Wide body of work for structured SDPs for matrix sensing, synchronization, phase retrieval problems (see https://sunju.org/research/nonconvex)

[Zhang 2021] showed that searching for spurious local minima, for fixed spurious point and fixed ground truth in matrix sensing problems, can be formulated as a SDP

#### Rest of the talk:

- Show that hidden convexity enables search over counterexamples for only fixed spurious point
- ullet Find counterexamples (lower-bounds on r) by systematically searching over spurious points
- Analyzing dual formulation leading to proof strategies

# Certifying Optimality Conditions with SDPs

### Proposition

If A has hidden-convexity of rank-r, then for fixed U, we can certify using a SDP that  $f_b(U) = \|A(UU^\top) - b\|^2$  has no spurious SOCP for all  $b \in A(S_r^k)$ 

Suffice to show that the following sets only intersect at  $b = A(UU^{\top})$ 

$$G_{A}(U) := \left\{ b \in \mathbb{R}^{m} \mid \nabla f_{b}(U)(V) = 0, \forall V \in \mathbb{R}^{k \times r} \right\}$$

$$H_{A}(U) := \left\{ b \in \mathbb{R}^{m} \mid \nabla^{2} f_{b}(U)(V, V) \geq 0, \forall V \in \mathbb{R}^{k \times r} \right\}$$

$$A(S_{r}^{k}) := \left\{ A(VV^{\top}) \in \mathbb{R}^{m} \mid \forall V \in \mathbb{R}^{k \times r} \right\}$$



These are all *convex sets* when *A* has rank-*r* hidden convexity!

# Certifying Optimality Conditions with SDPs



$$H_A^1: \mathbb{R}^m \to \mathbb{R}^{kr imes kr}$$
 a linear map:  $\operatorname{vec}(V)^\top H_A^1(a) \operatorname{vec}(V) := \left\langle A(VV^\top), a \right\rangle$   $H_A^2 = \mathbb{R}^{kr imes kr}$  a quadratic form:

 $\operatorname{vec}(V)^{\top} H_{AU}^2 \operatorname{vec}(V) := 2 \|A_U(V)\|^2$ 

We pick random direction c and check if the following SDP has optimum > 0

$$\max_{b} \langle c, A(UU^{\top}) - b \rangle$$
 
$$\exists b, \gamma \text{ s.t. } \langle c, b \rangle = 1$$
 
$$\text{s.t. } A_{U}^{*}(A(UU^{\top}) - b) = 0 \qquad \Leftrightarrow \qquad A_{U}^{*}(\gamma A(UU^{\top}) - b) = 0$$
 
$$H_{A}^{1}(A(UU^{\top}) - b) + H_{A,U}^{2} \succeq 0$$
 
$$b \in A(S_{r}^{k})$$
 
$$b \in A(S_{r}^{k})$$

Homogenized version allows us to certify almost surely

### Specializing to Sum of Squares

For polynomials,  $\mathcal{A}_{\mathbf{u}}: \mathbb{R}[x]_{n,d}^r o \mathbb{R}[x]_{n,2d}$ 

$$\mathcal{A}_{\mathbf{u}}(\mathbf{v}) := \mathcal{A}_{(u_1,\ldots,u_n)}((v_1,\ldots,v_n)) = \sum_i u_i v_i$$

$$\sigma(\mathbf{u}) := \mathcal{A}_{\mathbf{u}}(\mathbf{u})$$

The objective, first- and second-order optimality conditions:

$$f_{p}(\mathbf{u}) = \|\sigma(\mathbf{u}) - p\|^{2}$$

$$\nabla f_{p}(\mathbf{u})(\mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = 0$$

$$\nabla^{2} f_{p}(\mathbf{u})(\mathbf{v}, \mathbf{v}) \sim \langle \mathcal{A}_{\mathbf{v}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle + 2 \|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\|^{2} \ge 0$$

#### Prior work:

- Benign landscape for univariate polynomials [Legat, Y., Parrilo 2023]
- Generalization to varieties of minimal degree [Blekherman, Sinn, Velasco, Zhang 2024]

### **Dual Certificates**

Stronger formulation for projection onto  $\Sigma[x]_{n,2d}$ : Show that for all  $q \in \Sigma[x]_{n,2d}$ , following SDP has objective 0

$$\begin{aligned} \max_{p} \left\langle \sigma(\mathbf{u}) - q, \sigma(\mathbf{u}) - p \right\rangle \\ \text{s.t.} \ \forall \mathbf{v} : \left\langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \right\rangle &= 0 \\ \left\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \right\rangle + 2 \left\| \mathcal{A}_{\mathbf{u}}(\mathbf{v}) \right\|^2 &\geq 0 \end{aligned}$$

Taking the dual:

$$\min_{\mathbf{\lambda}, \mathbf{v}_i \in \mathbb{R}[x]_{n,d}} \sum_{i=1}^k \|\mathcal{A}_{\mathbf{u}}(\mathbf{v}_i)\|^2 \quad \text{s.t.} \quad q - \sigma(\mathbf{u}) = \frac{\mathcal{A}_{\mathbf{u}}(\mathbf{\lambda})}{k} + \sum_{i=1}^k \sigma(\mathbf{v}_i)$$

Proof strategy: exhibit a certificate  $\lambda$ ,  $v_i$  for every  $q \in \Sigma[x]_{n,2d}$ ,  $\mathbf{u} \in \mathbb{R}[x]_{n,d}$ 

### Strong duality may not hold!

Proof for univariate polynomials constructs an *extended dual certificate* [Legat, Y., Parrilo 2023]

# Automatic Search for Spurious Second-Order Points

Strategy: Given basis of  $\mathbb{R}[x]_{n,d}$ , search for **u** over all subsets of size r

Finding the following spurious points  $\mathbf{u}$  (where  $p = 2x_1^{2d} + \sigma(\mathbf{u})$ ):

- For n = 2, d = 2, r = 3,  $\mathbf{u} = (1, x_2, x_2^2)$
- For  $n = 2, d = 3, r = 4, \mathbf{u} = (1, x_2, x_2^2, x_2^3)$
- For  $n = 3, d = 2, r = 5, \mathbf{u} = (1, x_2, x_2^2, x_3, x_3^2)$

Generalize examples to following result:

### Proposition

For sum of squares decomposition of  $\Sigma[x]_{n,2d}$ , there are spurious second-order critical points for any  $r \leq \dim(\mathbb{R}[x]_{n-1,d})$ 

n = 2, d = 2 case appeared in [Blekherman, Sinn, Velasco, Zhang 2024]

# Proof of spurious second-order points

Let **u** be any orthogonal basis of  $\mathbb{R}[x]_{n-1,d}$  and  $\sigma(\mathbf{u}) - p = -2x_1^{2d}$ 

Since  ${\bf u}$  does not contain  $x_1$ , in any monomial of  ${\cal A}_{\bf u}({\bf v})$ , highest degree of  $x_1$  is d

First-order condition holds:  $\mathcal{A}_{\mathbf{u}}(\mathbf{v})$  has no  $x_1^{2d}$  terms,  $\langle \mathcal{A}_{\mathbf{u}}(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = 0$ 

Write  $\mathbf{v} = (c_i x_1^d + \phi_i(x))_{i=1,...,r}$ , where  $c_i \in \mathbb{R}$  and  $\phi_i(x)$  do not have  $x_1^d$  terms

$$\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle = -2 \sum_{i=1}^{r} c_i^2$$

 $A_{\mathbf{u}}(\mathbf{v})$  has only r distinct monomials containing  $x_1^d$ , each with coefficient  $c_i$ :

$$2\left\|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\right\|^2 \geq 2\sum_{i=1}^r c_i^2$$

Second-order condition holds:  $\langle \sigma(\mathbf{v}), \sigma(\mathbf{u}) - p \rangle + 2 \|\mathcal{A}_{\mathbf{u}}(\mathbf{v})\|^2 \ge 0$ 

### Relation to Pythagoras Numbers

Lower bounds on *r* for benign non-convexity:

|              | n = 1    | $\geq$ | n = 2     | $\geq$ | n = 3     | >  | n = 4     | <u>&gt;</u> |
|--------------|----------|--------|-----------|--------|-----------|----|-----------|-------------|
| d=1          | 2 [2, 2] | 2      | 3 [3, 3]  | 3      | 4 [4, 4]  | 4  | 5 [5, 5]  | 5           |
|              | 2 [2, 2] | 2      | 3 [3, 5]  | 4      |           |    |           | 11          |
| d = 3        | 2 [2, 3] | 2      | 4 [4, 7]  | 5      | ? [5, 12] | 11 | ? [7, 20] | 21          |
| d = 4        | 2 [2, 3] | 2      | 5 [4, 9]  | 6      | ? [5, 17] | 16 | ? [8, 30] | 36          |
| d = 5        | 2 [2, 4] | 2      | 6[4,11]   | 7      | ? [6, 23] | 22 | ? [9, 44] | 57          |
| <i>d</i> = 6 | 2 [2, 4] | 2      | 7 [4, 13] | 8      | ? [6, 29] | 29 | ? [9, 59] | 85          |

Only true for univariate polynomials and quadratic forms

Provably higher than  $\pi(n, d)$  for most other cases!

### Discussion and Conclusion

We showed that hidden convexity enables us to find SDP certificates of no spurious second-order critical point for  $\it fixed~U$ 

Computational search to find counterexamples of hidden convexity not implying benign Burer-Monteiro landscape

**Question:** Is there a geometric condition on the map A(X) that leads to both hidden convexity and benign non-convex landscape?

Question: Can we automatically find proofs of benign optimization landscapes?