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N
Introduction

Semidefinite programming (SDP) is a powerful and
expressive convex optimization method

Positive semidefinite variable X > 0 + linear constraints

Solved in polynomial time with interior point methods
(n~10%)
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N
Introduction

Semidefinite programming (SDP) is a powerful and
expressive convex optimization method

Positive semidefinite variable X > 0 + linear constraints

Solved in polynomial time with interior point methods
(n ~ 103%)

However: Success of deep learning shows that

@ Certain non-convex problems can be solved efficiently in practice with
first-order methods (n > 108)

@ Algorithms that scale linearly necessary for working with “big data”
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N
Introduction

Semidefinite programming (SDP) is a powerful and
expressive convex optimization method

Positive semidefinite variable X = 0 + linear constraints

Solved in polynomial time with interior point methods
(n ~ 103%)

However: Success of deep learning shows that

@ Certain non-convex problems can be solved efficiently in practice with
first-order methods (n > 108)
@ Algorithms that scale linearly necessary for working with “big data”

Can we apply these ideas to solving SDPs?
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|
The Burer-Monteiro Method

Burer-Monteiro methods for solving SDPs factor PSD variable X = UUT, then
perform local optimization on non-convex unconstrained problem

(AL X) =b; Vi

: T 2
X =0 —  min Z((A,-, uu’) — b))

Feasible <= Optimum =0
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The Burer-Monteiro Method

Burer-Monteiro methods for solving SDPs factor PSD variable X = UUT, then
perform local optimization on non-convex unconstrained problem

<A,’,X> :b,' Vi . . T 2
X =0 — mJnZ(<A,,UU ) — bi)

Feasible <= Optimum =0

May get stuck in local optimum (explicit counterexamples where second-order
critical point # global minimum)
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The Burer-Monteiro Method

Burer-Monteiro methods for solving SDPs factor PSD variable X = UUT, then
perform local optimization on non-convex unconstrained problem

<A,’,X> :b,' Vi . . T 2
X =0 — mUmZ(<A,,UU ) — b;)

Feasible <= Optimum =0

May get stuck in local optimum (explicit counterexamples where second-order
critical point # global minimum)

OR

When is non-convexity benign?
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The Burer-Monteiro Method

Burer-Monteiro methods for solving SDPs factor PSD variable X = UUT, then
perform local optimization on non-convex unconstrained problem

<A,’,X> :b,' Vi . . T 2
X =0 — mUmZ(<A,,UU ) — bi)

Feasible <= Optimum =0

May get stuck in local optimum (explicit counterexamples where second-order
critical point # global minimum)

A

4

OR

When is non-convexity benign?
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|
Related Work

SDP with m linear constraints, factorization X = UU ", where U € R"*",

Second-order critical points =—> Global minima (non-convexity benign):

e r > n [BMO5] (explicit counterexamples exist for r = n— 1, m = n)

e r = /m with smoothed analysis [CM19], determinant regularization [BMO5]
or generic constraints [Bho+18]

° , where r* maximum possible rank of SDP solution (matrix sensing
[GJZ17], rotational synchronization [BBV16])

[BMO5] Burer and Monteiro. “Local Minima and Convergence in Low-Rank Semidefinite Programming”. 2005.
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Related Work

SDP with m linear constraints, factorization X = UU ", where U € R"*",

Second-order critical points =—> Global minima (non-convexity benign):

e r > n [BMO5] (explicit counterexamples exist for r = n— 1, m = n)

e r = /m with smoothed analysis [CM19], determinant regularization [BMO5]
or generic constraints [Bho+18]

° , where r* maximum possible rank of SDP solution (matrix sensing
[GJZ17], rotational synchronization [BBV16])

Smaller r in factorization — less benign landscape

[BMO5] Burer and Monteiro. “Local Minima and Convergence in Low-Rank Semidefinite Programming”. 2005.

[CM19] Cifuentes and Moitra. “Polynomial Time Guarantees for the Burer-Monteiro Method”. 2019.

[Bho+18] Bhojanapalli et al. “Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form”. 2018.
[GJZ17] Ge, Jin, and Zheng. “No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis”. 2017.
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|
Related Work

SDP with m linear constraints, factorization X = UU ", where U € R"*",

Second-order critical points =—> Global minima (non-convexity benign):

e r > n [BMO5] (explicit counterexamples exist for r = n— 1, m = n)

e r = /m with smoothed analysis [CM19], determinant regularization [BMO5]
or generic constraints [Bho+18]

° , where r* maximum possible rank of SDP solution (matrix sensing
[GJZ17], rotational synchronization [BBV16])

Smaller r in factorization — less benign landscape

Can we get do better if the SDP has special structure?

[BMO5] Burer and Monteiro. “Local Minima and Convergence in Low-Rank Semidefinite Programming” . 2005.

[CM19] Cifuentes and Moitra. “Polynomial Time Guarantees for the Burer-Monteito Method" . 2019.

[Bho-+18] Bhojanapalli et al. “Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form". 2018.
[GJZ17] Ge, Jin, and Zheng. “No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis”. 2017.

[BBV16] Bandeira, Boumal, and Voroninski. “On the low-rank approach for semidefinite programs arising in synchronization and community detection”.
2016.
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|
Sum of Squares Optimization

Given p(x), can we write it as a sum of squares?  p(x) = >_I_; u;j(x)?

Certifies that p(x) > 0, and can be formulated as a

1

p(x) = b(x)"Qb(x), Q=0

[Chu+16] Chua et al. “Gram spectrahedra”. 2016.
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Sum of Squares Optimization

Given p(x), can we write it as a sum of squares?  p(x) = >_I_; u;j(x)?

Certifies that p(x) > 0, and can be formulated as a SDP:

1

p(x) = b(x)"Qb(x), Q=0

Q satisfying above constraints is called the Gram spectrahedron [Chu+16]

[Chu+16] Chua et al. “Gram spectrahedra”. 2016.
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|
Sum of Squares Optimization

Previous work: rank needed for benign non-convexity ~
of Gram spectrahedron
Can we do better?

[Sch22] Scheiderer. “Extreme points of Gram spectrahedra of binary forms”. 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite programming and sum-of-sq repi tations of ive
polynomials. SIAM J. on Optimization.
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Sum of Squares Optimization

Previous work: rank needed for benign non-convexity ~
of Gram spectrahedron
Can we do better?

Univariate (trigonometric) polynomials:

p(x) = ap + i a cos(kx) x € [0,27] .
CAOpnzI:;ations in signal processing, filter design and :0 05WWWWZWWM@@WW

[Sch22] Scheiderer. “Extreme points of Gram spectrahedra of binary forms”. 2022.
Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite programming and sum-of-sq rep!
polynomials. SIAM J. on Optimization.
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Sum of Squares Optimization

Previous work: rank needed for benign non-convexity ~
of Gram spectrahedron

Can we do better?

Univariate (trigonometric) polynomials:

2d i

p(x) = a0 + Z agcos(kx) x €10, 2n] o \

[H(w)|

ot e procesne fercesgnand NW‘W/WWN L

~
©

Gram spectrahedra has extreme points of all ranks: [Sch22]

But always has rank-2 point! (Sum of 2 squares)

[Sch22] Scheiderer. “Extreme points of Gram spectrahedra of binary forms”. 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite programming and sum-of-sq rep tations of ive
polynomials. SIAM J. on Optimization.
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N
Contributions

Find sum of squares decomposition of p(x) by solving (equivalent to B-M):

min fy(u) = |p(x) = Sy (32
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Contributions

Find sum of squares decomposition of p(x) by solving (equivalent to B-M):
. r 2 2
min fo(u) = ||P(X) =D e Ui(x) ||

For any norm on polynomials, if f,(u) = 0, >, ui(x)? is a sum of squares
decomposition of p(x).
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N
Contributions

Find sum of squares decomposition of p(x) by solving (equivalent to B-M):

min fy(u) = |p(x) = Sy (32

For any norm on polynomials, if f,(u) = 0, >, ui(x)? is a sum of squares
decomposition of p(x).

Theorem

For all nonnegative univariate polynomials p(x) € R[x|2q and any r > 2, if
u € R[x]} satisfies Vf,(u) = 0 and V?f,(u) = 0, then f,(u) = 0.
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N
Contributions

Find sum of squares decomposition of p(x) by solving (equivalent to B-M):

min fy(u) = |p(x) = Sy (32

For any norm on polynomials, if f,(u) = 0, >, ui(x)? is a sum of squares
decomposition of p(x).

Theorem

For all nonnegative univariate polynomials p(x) € R[x|2q and any r > 2, if
u € R[x]} satisfies Vf,(u) = 0 and V?f,(u) = 0, then f,(u) = 0.

First-order methods find sum of squares decomposition
(non-convexity benign)

If we choose a suitable norm, Vf,(u) can be computed in
O(dlog d) time using Fast Fourier Transforms (FFTs)
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Proof Sketch

Define Sylvester map A, : R[x]; — R[x]oqd

Au(v) = A, ) ((vi, ) = thvi + vy
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|
Proof Sketch

Define Sylvester map A, : R[x]; — R[x]oqd
Au(v) = A, ) ((vi, ) = thvi + vy

Given an inner product (-, -) on polynomials with associated norm ||-||:

2
(u) ||“1 + “2 Pl
(v) < ul + ug — p>
V2 ~ (A u% + 13— p) + [[Au(v)I
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N
Proof Sketch
Define Sylvester map A, : R[x]; — R[x]oqd
Au(v) = Agyy ) (v, v2)) = t1vi + wav2
Given an inner product (-, -) on polynomials with associated norm ||-||:
flu) = [t + v - p|

Au(V), 3 + 13 — p)
Au(v), 0} + 13 — p) + [[Au(v)|

Goal: For all u such that Vf,(u)(v) =0 and V?7,(u)(v,v) = 0 for all v, show
that 7,(u) = 0.
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N
Proof Sketch
Define Sylvester map A, : R[x]; — R[x]oqd
Au(v) = Agyy ) (v, v2)) = t1vi + wav2
Given an inner product (-, -) on polynomials with associated norm ||-||:
flu) = [t + v - p|

Au(V), 3 + 13 — p)
Au(v), 0} + 13 — p) + [[Au(v)|

Goal: For all u such that Vf,(u)(v) =0 and V?7,(u)(v,v) = 0 for all v, show

that 7,(u) = 0.

To do so, for every p € ¥[x]og and u € R[x]3, find v; € R[x]? so that:

k
o) + 35 T o(w) () = = [l + 48 = pl* = ~fo(w)
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|
Geometric Interpretation

k
2
Vip(u)(vo) + 3 V2 (u) (vi.w) = — [|uf + o — p||* = —Fy(w)
i=1
Our proof can be interpreted as finding a of this

condition for every u and p
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|
Geometric Interpretation

k
Vh(u)(vo) + 3 V() (i) = = [lof + 4 — p[[* =~ ()
i=1

Our proof can be interpreted as finding a Positivstellensatz certificate of this
condition for every u and p

p=o(u {p € Z[x]| V?fy(u) = 0}

{p € R[x] | Vfp(u) = 0}

Geometrically, we want to show that the only intersection between sets with zero
gradient and PSD hessian is when f,(u) = 0.
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|
Geometric Interpretation

k
2
Vip(u)(vo) + 3 V2 (u) (vi.w) = — [|uf + o — p||* = —Fy(w)
i=1
Our proof can be interpreted as finding a of this

condition for every u and p

p=olu {p e Z[x] | V?fy(u) = 0}

{p € R[x] | Vfp(u) = 0}
Geometrically, we want to show that the only intersection between sets with zero
gradient and PSD hessian is when f,(u) = 0.
For fixed u, these sets are convex (and can be represented by SDPs)!
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|
Proof Sketch

Vi (u)(v) ~ (Au(v), i + 13 — p) =
V26 (0)(v.v) ~ (A, &+ B — p) + |42 = 0

k
w2+ 2~ p|” = Vp(u)(vo) + D V() (vi. vi)
i=1
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|
Proof Sketch

VA (u)(v) ~ (Au(v), & + 13 — p) =0
V() (v ) ~ (Au(v). 2+ 1B — p) + [Au(w)[2 > 0

k
w2+ 2~ p|” = Vp(u)(vo) + D V() (vi. vi)
i=1

Suppose uq, up are coprime (true generically)
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|
Proof Sketch

VA (u)(v) ~ (Au(v), & + 13 — p) =0
V() (v ) ~ (Au(v). 2+ 1B — p) + [Au(w)[2 > 0

k
w2+ 2~ p|” = Vp(u)(vo) + D V() (vi. vi)
i=1

Bézout's lemma (A, is onto) = there exist vg such that

Au(vo) = ~(} + i} — p) = Vihy(u)(vo) = —|uf + uF — p|’
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|
Proof Sketch

VA (u)(v) ~ (Au(v), & + 13 — p) =0
V() (v ) ~ (Au(v). 2+ 1B — p) + [Au(w)[2 > 0

k
w2+ 2~ p|” = Vp(u)(vo) + D V() (vi. vi)
i=1

Bézout's lemma (A, is onto) = there exist vg such that
2
Au(vo) = —(uf + 13 — p) = Vihy(u)(vo) = —|[uf + 15 —p]
If p(x) =23, si(x)? choose v; = (s;, —s;), vo = (—u1, —th):
Vi(u)(vo) = — (uf + 3, uf + 13 — p)
S V2 o(w)(vi.vi) = (p, 1 + 3 — p)

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 10/14



|
Proof Sketch

Vi, (u)(v) ~ (Au(v), i + 13 — p) =0
V2, (u)(v.v) ~ (Ay(v), 0} + 13 = p) + [ Au(v)|]* > 0

k
w2+ 2~ p|” = Vp(u)(vo) + D V() (vi. vi)
i=1

Bézout's lemma (A, is onto) = there exist vg such that
Au(vo) = ~(} + i} — p) = Vihy(u)(vo) = —|uf + uF — p|’
If p(x) =23, si(x)? choose v; = (s;, —s;), vo = (—u1, —th):
Viy(u)(vo) = — (i + 13, uf + u3 — p)
Y V2 hu(u)(viovi) = (p, uf + 3 — p)
Main technical result: how to interpolate between these two cases
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Sampled Basis

Theorem holds for any inner product (p(x), g(x)) on polynomials, which should
we choose?

[LPO4] Lofberg and Parrilo. “From Coefficients to Samples: A New Approach to SOS Optimization”. 2004.
[CP17] Cifuentes and Parrilo. “Sampling Algebraic Varieties for Sum of Squares Programs”. 2017.
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|
Sampled Basis

Theorem holds for any inner product (p(x), g(x)) on polynomials, which should
we choose?

Given p(x), q(x) of degree d, choose d + 1 points x

d+1 d+1
(p(x), q(x Zp(Xk (), PGNP = pOxk)?
k=1

Valid inner product: when x; distinct, if ||p(x)||> = 0 then p(x) = 0.

[LPO4] Lofberg and Parrilo. “From Coefficients to Samples: A New Approach to SOS Optimization”. 2004.
[CP17] Cifuentes and Parrilo. “Sampling Algebraic Varieties for Sum of Squares Programs”. 2017.
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|
Sampled Basis

Theorem holds for any inner product (p(x), g(x)) on polynomials, which should
we choose?

Given p(x), q(x) of degree d, choose d + 1 points x

d+1 d+1
(p(x), q(x Zp(Xk (), PGNP = pOxk)?
k=1

Valid inner product: when x; distinct, if ||p(x)||> = 0 then p(x) = 0.

Sum of squares using a sampled /interpolation basis studied by [LP04] and [CP17].

[LPO4] Lofberg and Parrilo. “From Coefficients to Samples: A New Approach to SOS Optimization”. 2004.
[CP17] Cifuentes and Parrilo. “Sampling Algebraic Varieties for Sum of Squares Programs”. 2017.
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|
Sampled Basis

Theorem holds for any inner product (p(x), g(x)) on polynomials, which should
we choose?

Given p(x), q(x) of degree d, choose d + 1 points x

d+1 d+1
(p(x), q(x Zp(Xk (), PGNP = pOxk)?
k=1

Valid inner product: when x; distinct, if ||p(x)||> = 0 then p(x) = 0.

Sum of squares using a sampled /interpolation basis studied by [LP04] and [CP17].

How should we choose x,?

[LPO4] Lofberg and Parrilo. “From Coefficients to Samples: A New Approach to SOS Optimization”. 2004.
[CP17] Cifuentes and Parrilo. “Sampling Algebraic Varieties for Sum of Squares Programs”. 2017.
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Numerical Implementation

Compute sum of squares decomposition of
degree 4n trigonometric polynomial

2d

p(x) = ag + Z ag cos(kx) x €0, 7] z

k=1

Using basis vectors evaluated at 4d + 1 points

Bk = [1,cos(xk), - . ., cos(dxk)]
km

Xk = —

k d’

k=1,....4d+1

Matrix-vector producted in V£,(U) computed by
FFT

V£,(U) = U BDiag(||UT Bi|” = p(x«))BT

Image credit: Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani. (2006) Algorithms
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Numerical Results

Compute sum of squares decomposition
for random trigonometric polynomial

Objective Value

Convergence rate for L-BFGS with
random initialization

0 300 600 900 1200
ITterations

Tuesday 26t" July, 2022 13/14
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Numerical Results

Compute sum of squares decomposition
for random trigonometric polynomial

Objective Value

Convergence rate for L-BFGS with

random initialization w?

0 300 600 900 1200
ITterations

Results (stop at 10~ relative error in u):

Degree of p(x) 10,000 20,000 100,000 200,000 1,000,000
Time (s) 6 9 53 160 1461
Iterations 530 632 1126 1375 2303
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Conclusion

When does it make sense to solve non-convex formulations of convex problems?
In our setting we can prove that non-convexity does not hurt us

Near-linear time iteration cost with first-order methods in a benign landscape
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