
Low-Rank Univariate Sum of Squares
Has No Spurious Local Minima

ICCOPT 2022

Chenyang Yuan (Joint with Benôıt Legat and Pablo Parrilo)
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Introduction

Semidefinite programming (SDP) is a powerful and
expressive convex optimization method

Positive semidefinite variable X ⪰ 0 + linear constraints

Solved in polynomial time with interior point methods
(n ∼ 103)

However: Success of deep learning shows that

Certain non-convex problems can be solved efficiently in practice with
first-order methods (n > 108)

Algorithms that scale linearly necessary for working with “big data”

Can we apply these ideas to solving SDPs?
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The Burer-Monteiro Method

Burer-Monteiro methods for solving SDPs factor PSD variable X = UUT , then
perform local optimization on non-convex unconstrained problem

⟨Ai ,X ⟩ = bi ∀i
X ⪰ 0

−→ min
U

∑
i

(⟨Ai ,UU
T ⟩ − bi )

2

Feasible ⇐⇒ Optimum = 0

May get stuck in local optimum (explicit counterexamples where second-order
critical point ̸= global minimum)

OR

When is non-convexity benign?
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Related Work

SDP with m linear constraints, factorization X = UU⊤, where U ∈ Rn×r .

Second-order critical points =⇒ Global minima (non-convexity benign):

r ≥ n [BM05] (explicit counterexamples exist for r = n − 1, m = n)

r ≳
√
m with smoothed analysis [CM19], determinant regularization [BM05]

or generic constraints [Bho+18]

r ≳ r∗, where r∗ maximum possible rank of SDP solution (matrix sensing
[GJZ17], rotational synchronization [BBV16])

Smaller r in factorization → less benign landscape

Can we get do better if the SDP has special structure?

[BM05] Burer and Monteiro. “Local Minima and Convergence in Low-Rank Semidefinite Programming”. 2005.

[CM19] Cifuentes and Moitra. “Polynomial Time Guarantees for the Burer-Monteiro Method”. 2019.

[Bho+18] Bhojanapalli et al. “Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form”. 2018.

[GJZ17] Ge, Jin, and Zheng. “No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis”. 2017.

[BBV16] Bandeira, Boumal, and Voroninski. “On the low-rank approach for semidefinite programs arising in synchronization and community detection”.
2016.
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Sum of Squares Optimization

Given p(x), can we write it as a sum of squares? p(x) =
∑r

i=1 ui (x)
2

Certifies that p(x) ≥ 0, and can be formulated as a SDP:

p(x) = b⃗(x)⊤Qb⃗(x), Q ⪰ 0

Q satisfying above constraints is called the Gram spectrahedron [Chu+16]

[Chu+16] Chua et al. “Gram spectrahedra”. 2016.

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 5 / 14



Sum of Squares Optimization

Given p(x), can we write it as a sum of squares? p(x) =
∑r

i=1 ui (x)
2

Certifies that p(x) ≥ 0, and can be formulated as a SDP:

p(x) = b⃗(x)⊤Qb⃗(x), Q ⪰ 0

Q satisfying above constraints is called the Gram spectrahedron [Chu+16]

[Chu+16] Chua et al. “Gram spectrahedra”. 2016.

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 5 / 14



Sum of Squares Optimization

Previous work: rank needed for benign non-convexity ∼ max rank of extreme
points of Gram spectrahedron

Can we do better?

Univariate (trigonometric) polynomials:

p(x) = a0 +
2d∑
k=1

ak cos(kx) x ∈ [0, 2π]

Applications in signal processing, filter design and
control

Gram spectrahedra has extreme points of all ranks: 2 ≤ r ≲
√
d [Sch22]

But always has rank-2 point! (Sum of 2 squares)

[Sch22] Scheiderer. “Extreme points of Gram spectrahedra of binary forms”. 2022.

Image credit: Tae Roh and Lieven Vandenberghe. (2006) Discrete transforms, semidefinite programming and sum-of-squares representations of nonnegative
polynomials. SIAM J. on Optimization.
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Contributions

Find sum of squares decomposition of p(x) by solving (equivalent to B-M):

min
u

fp(u) =
∥∥p(x)−∑r

i=1 ui (x)
2
∥∥2

For any norm on polynomials, if fp(u) = 0,
∑

i ui (x)
2 is a sum of squares

decomposition of p(x).

Theorem

For all nonnegative univariate polynomials p(x) ∈ R[x ]2d and any r ≥ 2, if
u ∈ R[x ]rd satisfies ∇fp(u) = 0 and ∇2fp(u) ⪰ 0, then fp(u) = 0.

First-order methods find sum of squares decomposition
(non-convexity benign)

If we choose a suitable norm, ∇fp(u) can be computed in
O(d log d) time using Fast Fourier Transforms (FFTs)
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Proof Sketch

Define Sylvester map Au : R[x ]rd → R[x ]2d

Au(v) = A(u1,u2) ((v1, v2)) = u1v1 + u2v2

Given an inner product ⟨·, ·⟩ on polynomials with associated norm ∥·∥:

fp(u) =
∥∥u21 + u22 − p

∥∥2
∇fp(u)(v) ∼

〈
Au(v), u

2
1 + u22 − p

〉
∇2fp(u)(v, v) ∼

〈
Av(v), u

2
1 + u22 − p

〉
+ ∥Au(v)∥2

Goal: For all u such that ∇fp(u)(v) = 0 and ∇2fp(u)(v, v) ⪰ 0 for all v, show
that fp(u) = 0.

To do so, for every p ∈ Σ[x ]2d and u ∈ R[x ]2d , find vi ∈ R[x ]2d so that:

∇fp(u)(v0) +
k∑

i=1

∇2fp(u)(vi, vi) = −
∥∥u21 + u22 − p

∥∥2 = −fp(u)
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Geometric Interpretation

∇fp(u)(v0) +
k∑

i=1

∇2fp(u)(vi, vi) = −
∥∥u21 + u22 − p

∥∥2 = −fp(u)

Our proof can be interpreted as finding a Positivstellensatz certificate of this
condition for every u and p

{
p ∈ Σ[x ] | ∇2fp(u) ⪰ 0

}
{p ∈ R[x ] | ∇fp(u) = 0}

p = σ(u)

Geometrically, we want to show that the only intersection between sets with zero
gradient and PSD hessian is when fp(u) = 0.

For fixed u, these sets are convex (and can be represented by SDPs)!

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 9 / 14



Geometric Interpretation

∇fp(u)(v0) +
k∑

i=1

∇2fp(u)(vi, vi) = −
∥∥u21 + u22 − p

∥∥2 = −fp(u)

Our proof can be interpreted as finding a Positivstellensatz certificate of this
condition for every u and p

{
p ∈ Σ[x ] | ∇2fp(u) ⪰ 0

}
{p ∈ R[x ] | ∇fp(u) = 0}

p = σ(u)

Geometrically, we want to show that the only intersection between sets with zero
gradient and PSD hessian is when fp(u) = 0.

For fixed u, these sets are convex (and can be represented by SDPs)!

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 9 / 14



Geometric Interpretation

∇fp(u)(v0) +
k∑

i=1

∇2fp(u)(vi, vi) = −
∥∥u21 + u22 − p

∥∥2 = −fp(u)

Our proof can be interpreted as finding a Positivstellensatz certificate of this
condition for every u and p

{
p ∈ Σ[x ] | ∇2fp(u) ⪰ 0

}
{p ∈ R[x ] | ∇fp(u) = 0}

p = σ(u)

Geometrically, we want to show that the only intersection between sets with zero
gradient and PSD hessian is when fp(u) = 0.

For fixed u, these sets are convex (and can be represented by SDPs)!

Chenyang Yuan (MIT) Low-Rank Univariate Sum of Squares Tuesday 26th July, 2022 9 / 14



Proof Sketch

∇fp(u)(v) ∼
〈
Au(v), u

2
1 + u22 − p

〉
= 0

∇2fp(u)(v, v) ∼
〈
Av(v), u

2
1 + u22 − p

〉
+ ∥Au(v)∥2 ≥ 0

−
∥∥u21 + u22 − p

∥∥2 = ∇fp(u)(v0) +
k∑

i=1

∇2fp(u)(vi, vi)

Suppose u1, u2 are coprime (true generically)

Bézout’s lemma (Au is onto) =⇒ there exist v0 such that

Au(v0) = −(u21 + u22 − p) =⇒ ∇fp(u)(v0) = −
∥∥u21 + u22 − p

∥∥2
Suppose u1 = u2. If p(x) = 2

∑
i si (x)

2, choose vi = (si ,−si ), v0 = (−u1,−u2):

∇fp(u)(v0) = −
〈
u21 + u22 , u

2
1 + u22 − p

〉∑k
i=1 ∇2fp(u)(vi, vi) =

〈
p, u21 + u22 − p

〉
Main technical result: how to interpolate between these two cases
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Au(v0) = −(u21 + u22 − p) =⇒ ∇fp(u)(v0) = −
∥∥u21 + u22 − p

∥∥2

Suppose u1 = u2. If p(x) = 2
∑

i si (x)
2, choose vi = (si ,−si ), v0 = (−u1,−u2):

∇fp(u)(v0) = −
〈
u21 + u22 , u

2
1 + u22 − p

〉∑k
i=1 ∇2fp(u)(vi, vi) =

〈
p, u21 + u22 − p

〉
Main technical result: how to interpolate between these two cases
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Sampled Basis

Theorem holds for any inner product ⟨p(x), q(x)⟩ on polynomials, which should
we choose?

Given p(x), q(x) of degree d , choose d + 1 points xk

⟨p(x), q(x)⟩ =
d+1∑
k=1

p(xk)q(xk), ∥p(x)∥2 =
d+1∑
k=1

p(xk)
2

Valid inner product: when xk distinct, if ∥p(x)∥2 = 0 then p(x) = 0.

Sum of squares using a sampled/interpolation basis studied by [LP04] and [CP17].

How should we choose xk?

[LP04] Lofberg and Parrilo. “From Coefficients to Samples: A New Approach to SOS Optimization”. 2004.

[CP17] Cifuentes and Parrilo. “Sampling Algebraic Varieties for Sum of Squares Programs”. 2017.
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Numerical Implementation

Compute sum of squares decomposition of
degree 4n trigonometric polynomial

p(x) = a0 +
2d∑
k=1

ak cos(kx) x ∈ [0, π]

Using basis vectors evaluated at 4d + 1 points

Bk = [1, cos(xk), . . . , cos(dxk)]

xk =
kπ

d
, k = 1, . . . , 4d + 1

Matrix-vector producted in ∇fp(U) computed by
FFT

∇fp(U) = U⊤B Diag(
∥∥U⊤Bk

∥∥2 − p(xk))B
⊤

Image credit: Christos Papadimitriou, Sanjoy Dasgupta, and Umesh Vazirani. (2006) Algorithms
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Numerical Results

Compute sum of squares decomposition
for random trigonometric polynomial

Convergence rate for L-BFGS with
random initialization

Results (stop at 10−7 relative error in u):

Degree of p(x) 10,000 20,000 100,000 200,000 1,000,000

Time (s) 6 9 53 160 1461

Iterations 530 632 1126 1375 2303
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Conclusion

When does it make sense to solve non-convex formulations of convex problems?

In our setting we can prove that non-convexity does not hurt us

Near-linear time iteration cost with first-order methods in a benign landscape
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