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Computational tractability

+

Provable approximation guarantees
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Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on Kn = Rn or Cn:

Opt(A) := max
x∈Kn, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)
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Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTQx)(xTQ−1x) ≤ 1

4

(√
λ1(Q)
λn(Q) +

√
λn(Q)
λ1(Q)

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i ): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri )): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . . )
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Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with O(
(
n+d
d

)
) vars/consts Approx: Ω( 1

n )

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with O(n2d) vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight
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Semidefinite Relaxation

max
‖x‖=1

∏d
i=1 〈x ,Aix〉1/d (Opt)

max
X

∏d
i=1 〈X ,Ai 〉1/d

s.t. Tr(X ) = 1, X � 0

min
λ,α

λ

s.t. 1
d

∑d
i=1 αiAi � λI∏

i αi ≥ 1, αi > 0

(OptSDP)

rank-1 relax use AM-GM

dual

Theorem
Let r = rank(X ∗) ≤ n, γ be Euler’s constant, φ be digamma function

cr (K)OptSDP ≤ Opt ≤ OptSDP

cr (K) =

{
exp(−γ − log 2− φ

(
r
2

)
+ log

(
r
2

)
) > 0.2807 if K = R

exp(−γ − φ(r) + log(r)) > 0.5614 if K = C
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Proof Sketch

Rounding algorithm: Given optimum X ∗, produce unit vector x̂ by:

• Sample x ∼ N(0,X ∗)

• Normalize x̂ = x/ ‖x‖

Lower bound expected value of objective:

Opt ≥ E

[
d∏

i=1

〈x̂ ,Ai x̂〉1/d
]

= E

[
exp

(
1

d

d∑
i=1

log 〈x̂ ,Ai x̂〉

)]

≥ exp

(
1

d

d∑
i=1

E[log 〈x̂ ,Ai x̂〉]

)
≥ cr (K)OptSDP
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Application: convex hull of image of quadratic map

Let ϕ(x) : Kn → Kd be a quadratic map: x 7→ (〈x ,A1x〉 , . . . , 〈x ,Adx〉)

When is ϕ(Kn) convex? (always true for d = 2, not in general)

How far is ϕ(Kn) from conv(ϕ(Kn))? Measure relative entropy distance

between intersection of these cones and the simplex ∆d

Theorem
Let a ∈ conv(ϕ(Kn)) ∩∆d . Then there exists a point b ∈ ϕ(Kn) ∩∆d

such that

D(a ‖ b) =
d∑

i=1

ai ln

(
ai
bi

)
≤ log(cr (K))

Proved by Barvinok (2014) for a larger constant, our analysis gives

asymptotically optimal constant

7
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Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d ],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy

8
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Example: Icosahedral form

Let ψ be golden ratio, C chosen so that max
x2+y2+z2=1

p(x , y , z) = 1.

p(x , y , z) = C [(x + ψy)(x − ψy)(y + ψz)(y − ψz)(z + ψx)(z − ψx)]2

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible

solution from relaxations OptSoSk

9
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 2, lower: 0.28197, upper: 1.59397
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3 2 1 0 1 2 3
1.00

0.75
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0.25

0.00

0.25

0.50
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1.00

sin
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)
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75
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0.25

0.00

0.25

0.50
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1.00

sin
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 5, lower: 0.74235, upper: 1.07797
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 6, lower: 0.79445, upper: 1.00000
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Distribution sampled from rounding algorithm

Distribution concentrates towards optima as k increases
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Conclusion

Takeaways:

• Product of PSD forms has nice structure and generalizes many

problems

• Exploiting product structure allows us to write a computationally

efficient relaxation with good approximation guarantees

Future work:

• Low-rank guarantees of solution from symmetry

• How to generate intermediate Sum-of-Squares relaxations for other

high degree polynomial optimization problems?
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