
Semidefinite Relaxations of Product of PSD

Forms

LIDS Student Conference 2021

Chenyang Yuan (joint work with Pablo Parrilo)

February 3, 2021

Introduction

How to exploit product structure in polynomial
optimization problems

Computational tractability

+

Provable approximation guarantees

1

Introduction

How to exploit product structure in polynomial
optimization problems

Computational tractability

+

Provable approximation guarantees

1

Introduction

How to exploit product structure in polynomial
optimization problems

Computational tractability

+

Provable approximation guarantees

1

Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on K = R or C:

Opt(A) := max
x∈K, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)

2

Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on K = R or C:

Opt(A) := max
x∈K, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)

2

Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on K = R or C:

Opt(A) := max
x∈K, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)

2

Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on K = R or C:

Opt(A) := max
x∈K, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)

2

Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri)): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . .)

3

Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2

Approximating permanents of PSD matrices [YP20] (Ai = viv
†
i): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri)): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . .)

3

Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri)): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . .)

3

Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri)): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d

And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . .)

3

Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri)): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . .)
3

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω(1
n)

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight

4

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω(1
n)

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight

4

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω(1
n)

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight

4

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω(1
n)

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight

4

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω(1
n)

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight

4

Semidefinite Relaxation

max
‖x‖=1

∏d
i=1 〈x ,Aix〉1/d (Opt)

max
X

∏d
i=1 〈X ,Ai 〉1/d

s.t. Tr(X) = 1, X � 0

min
λ,α

λ

s.t. 1
d

∑d
i=1 αiAi � λI∏

i αi ≥ 1, αi > 0

(OptSDP)

rank-1 relax use AM-GM

dual

Theorem
Let r = rank(X) ≤ n, γ be Euler’s constant, φ be digamma function

cr (K)OptSDP ≤ Opt ≤ OptSDP

cr (K) =

{
exp(−γ − log 2− φ

(
r
2

)
+ log

(
r
2

)
) > 0.2807 if K = R

exp(−γ − φ(r) + log(r)) > 0.5614 if K = C

5

Semidefinite Relaxation

max
‖x‖=1

∏d
i=1 〈x ,Aix〉1/d (Opt)

max
X

∏d
i=1 〈X ,Ai 〉1/d

s.t. Tr(X) = 1, X � 0

min
λ,α

λ

s.t. 1
d

∑d
i=1 αiAi � λI∏

i αi ≥ 1, αi > 0

(OptSDP)

rank-1 relax use AM-GM

dual

Theorem
Let r = rank(X) ≤ n, γ be Euler’s constant, φ be digamma function

cr (K)OptSDP ≤ Opt ≤ OptSDP

cr (K) =

{
exp(−γ − log 2− φ

(
r
2

)
+ log

(
r
2

)
) > 0.2807 if K = R

exp(−γ − φ(r) + log(r)) > 0.5614 if K = C

5

Semidefinite Relaxation

max
‖x‖=1

∏d
i=1 〈x ,Aix〉1/d (Opt)

max
X

∏d
i=1 〈X ,Ai 〉1/d

s.t. Tr(X) = 1, X � 0

min
λ,α

λ

s.t. 1
d

∑d
i=1 αiAi � λI∏

i αi ≥ 1, αi > 0

(OptSDP)

rank-1 relax use AM-GM

dual

Theorem
Let r = rank(X) ≤ n, γ be Euler’s constant, φ be digamma function

cr (K)OptSDP ≤ Opt ≤ OptSDP

cr (K) =

{
exp(−γ − log 2− φ

(
r
2

)
+ log

(
r
2

)
) > 0.2807 if K = R

exp(−γ − φ(r) + log(r)) > 0.5614 if K = C

5

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy

6

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy

6

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy

6

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy
6

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that max
x2+y2+z2=1

p(x , y , z) = 1.

p(x , y , z) = C [(x + ψy)(x − ψy)(y + ψz)(y − ψz)(z + ψx)(z − ψx)]2

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible

solution from relaxations OptSoSk

7

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that max
x2+y2+z2=1

p(x , y , z) = 1.

p(x , y , z) = C [(x + ψy)(x − ψy)(y + ψz)(y − ψz)(z + ψx)(z − ψx)]2

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible

solution from relaxations OptSoSk

7

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that max
x2+y2+z2=1

p(x , y , z) = 1.

p(x , y , z) = C [(x + ψy)(x − ψy)(y + ψz)(y − ψz)(z + ψx)(z − ψx)]2

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible

solution from relaxations OptSoSk

7

Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 2, lower: 0.28197, upper: 1.59397

8

Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 3, lower: 0.52128, upper: 1.34164

9

Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 4, lower: 0.65640, upper: 1.18500

10

Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 5, lower: 0.74235, upper: 1.07797

11

Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 6, lower: 0.79445, upper: 1.00000

12

Distribution sampled from rounding algorithm

Distribution concentrates towards optima as k increases

13

Conclusion

Takeaways:

• Product of PSD forms has nice structure and generalizes many

problems

• Exploiting product structure allows us to write a computationally

efficient relaxation with good approximation guarantees

Future work:

• Low-rank guarantees of solution from symmetry

• How to generate intermediate Sum-of-Squares relaxations for other

high degree polynomial optimization problems?

14

Conclusion

Takeaways:

• Product of PSD forms has nice structure and generalizes many

problems

• Exploiting product structure allows us to write a computationally

efficient relaxation with good approximation guarantees

Future work:

• Low-rank guarantees of solution from symmetry

• How to generate intermediate Sum-of-Squares relaxations for other

high degree polynomial optimization problems?

14

