Semidefinite Relaxations of Product of PSD Forms

LIDS Student Conference 2021

Chenyang Yuan (joint work with Pablo Parrilo) February 3, 2021

How to exploit product structure in polynomial optimization problems

How to exploit product structure in polynomial optimization problems

Computational tractability

How to exploit product structure in polynomial optimization problems

Computational tractability + Provable approximation guarantees

Introduction

Given $\mathcal{A} = (A_1, \ldots, A_d)$ where $A_i \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

$$ext{Opt}(\mathcal{A}) \coloneqq \max_{x \in \mathbb{K}, \, \|x\| = 1} \left(\prod_{i=1}^d \langle x, A_i x \rangle \right)^{1/d}$$

Introduction

Given $\mathcal{A} = (A_1, \ldots, A_d)$ where $A_i \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

$$\operatorname{Opt}(\mathcal{A}) \coloneqq \max_{x \in \mathbb{K}, \, \|x\|=1} \left(\prod_{i=1}^{d} \langle x, A_i x \rangle\right)^{1/d}$$

Properties:

• High-degree polynomial optimization problem: degree 2*d* in *n* variables

Introduction

Given $\mathcal{A} = (A_1, \ldots, A_d)$ where $A_i \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

$$\operatorname{Opt}(\mathcal{A}) \coloneqq \max_{x \in \mathbb{K}, \, \|x\| = 1} \left(\prod_{i=1}^{d} \langle x, A_i x \rangle \right)^{1/d}$$

Properties:

- High-degree polynomial optimization problem: degree 2*d* in *n* variables
- Compact representation: represented in $O(n^2d)$ space

Given $\mathcal{A} = (A_1, \ldots, A_d)$ where $A_i \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K} = \mathbb{R}$ or \mathbb{C} :

$$\operatorname{Opt}(\mathcal{A}) \coloneqq \max_{x \in \mathbb{K}, \, \|x\| = 1} \left(\prod_{i=1}^{d} \langle x, A_i x \rangle \right)^{1/d}$$

Properties:

- High-degree polynomial optimization problem: degree 2*d* in *n* variables
- Compact representation: represented in $O(n^2d)$ space
- Polynomial time solution when d is fixed, NP-hard when $d = \Omega(n)$

Applications and Motivation

$$OPT(\mathcal{A}) \coloneqq \max_{\|x\|=1} \prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d}$$

$$OPT(\mathcal{A}) \coloneqq \max_{\|x\|=1} \prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d}$$

$$\max_{\|x\|=1}\sqrt{(x^{T}Ax)(x^{T}A^{-1}x)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}} + \sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2}$$

$$OPT(\mathcal{A}) \coloneqq \max_{\|x\|=1} \prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d}$$

$$\max_{\|x\|=1} \sqrt{(x^{\mathsf{T}}Ax)(x^{\mathsf{T}}A^{-1}x)} \leq \frac{1}{4} \left(\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}}\right)^2$$

Approximating permanents of PSD matrices [YP20] $(A_i = v_i v_i^{\dagger})$: Let $M = V^{\dagger}V$, v_i columns of V.

 $r(M) \coloneqq \max_{\|x\|=1, x \in \mathbb{C}^n} \prod_{i=1}^n |\langle x, v_i \rangle|^2, \quad \frac{n!}{n^n} r(M) \le \operatorname{per}(M)$

$$OPT(\mathcal{A}) \coloneqq \max_{\|x\|=1} \prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d}$$

$$\max_{\|x\|=1}\sqrt{(x^{T}Ax)(x^{T}A^{-1}x)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}} + \sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2}$$

Approximating permanents of PSD matrices [YP20] $(A_i = v_i v_i^{\dagger})$: Let $M = V^{\dagger}V$, v_i columns of V.

$$r(M) \coloneqq \max_{\|x\|=1, x \in \mathbb{C}^n} \prod_{i=1}^n |\langle x, v_i \rangle|^2, \quad \frac{n!}{n^n} r(M) \le \operatorname{per}(M)$$

Portfolio optimization $(A_i = \text{diag}(r_i))$: Given rates of return over a time period $r_1, \ldots, r_T \in \mathbb{R}^n_+$, maximize expected profit:

$$\max_{y\geq 0,\sum_{i}y_{i}=1}\left(\prod_{i=1}^{T}\langle y,r_{i}\rangle\right)^{1/d}$$

$$OPT(\mathcal{A}) \coloneqq \max_{\|x\|=1} \prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d}$$

$$\max_{\|x\|=1}\sqrt{(x^{T}Ax)(x^{T}A^{-1}x)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}} + \sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2}$$

Approximating permanents of PSD matrices [YP20] $(A_i = v_i v_i^{\dagger})$: Let $M = V^{\dagger}V$, v_i columns of V.

$$r(M) \coloneqq \max_{\|x\|=1, x \in \mathbb{C}^n} \prod_{i=1}^n |\langle x, v_i \rangle|^2, \quad \frac{n!}{n^n} r(M) \le \operatorname{per}(M)$$

Portfolio optimization $(A_i = \text{diag}(r_i))$: Given rates of return over a time period $r_1, \ldots, r_T \in \mathbb{R}^n_+$, maximize expected profit:

$$\max_{y \ge 0, \sum_{i} y_{i} = 1} \left(\prod_{i=1}^{T} \langle y, r_{i} \rangle \right)^{1/d}$$

And more! (Solving systems of quadratic equations, linear polarization constants, Nash social welfare ...)

Our relaxation and approximation algorithm that exploits compact representation:

Compute: SDP with $n^2 d$ vars/consts Approx: $\Omega(1)$

Our relaxation and approximation algorithm that exploits compact representation:

Compute: SDP with $n^2 d$ vars/consts Approx: $\Omega(1)$

We also:

• Prove that when $d = \Omega(n)$, NP-hard to approximate

Our relaxation and approximation algorithm that exploits compact representation:

Compute: SDP with $n^2 d$ vars/consts Approx: $\Omega(1)$

We also:

- Prove that when $d = \Omega(n)$, NP-hard to approximate
- Introduce higher-degree relaxations that trade off computation with approximation quality

Our relaxation and approximation algorithm that exploits compact representation:

Compute: SDP with $n^2 d$ vars/consts Approx: $\Omega(1)$

We also:

- Prove that when $d = \Omega(n)$, NP-hard to approximate
- Introduce higher-degree relaxations that trade off computation with approximation quality
- Exhibit integrality gap instances that show our analysis of our SDP based relaxation is tight

Semidefinite Relaxation

Semidefinite Relaxation

Theorem Let $r = \operatorname{rank}(X) \le n$, γ be Euler's constant, ϕ be digamma function

 $c_r(\mathbb{K})$ OptSDP \leq Opt \leq OptSDP

Semidefinite Relaxation

Theorem Let $r = \operatorname{rank}(X) \le n$, γ be Euler's constant, ϕ be digamma function

 $c_{r}(\mathbb{K}) \operatorname{OPTSDP} \leq \operatorname{OPT} \leq \operatorname{OPTSDP}$ $\left(\exp(-\gamma - \log 2 - \phi\left(\frac{r}{2}\right) + \log\left(\frac{r}{2}\right)\right) > 0.2807 \quad \text{if } \mathbb{K} = \mathbb{R}$

$$c_r(\mathbb{K}) = \begin{cases} exp(-\gamma - \phi(r) + \log(r)) > 0.5614 & \text{if } \mathbb{K} = \mathbb{C} \end{cases}$$

OPTSDP constructed using AM/GM inequality. If $\prod_i \alpha_i = 1$,

$$\prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d} \leq x^{T} \left(\frac{1}{d} \sum_{i=1}^{d} \alpha_i A_i \right) x$$

Can we get a better bound with a higher-degree polynomial on the RHS?

OPTSDP constructed using AM/GM inequality. If $\prod_i \alpha_i = 1$,

$$\prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d} \le x^{T} \left(\frac{1}{d} \sum_{i=1}^{d} \alpha_i A_i \right) x$$

Can we get a better bound with a higher-degree polynomial on the RHS? Let E_k be elementary symmetric polynomials:

$$E_k(y_1,\ldots,y_d) = \binom{d}{k}^{-1} \sum_{I \subseteq [d],|I|=k} \prod_{i \in I} x_i$$

OPTSDP constructed using AM/GM inequality. If $\prod_i \alpha_i = 1$,

$$\prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d} \leq x^{T} \left(\frac{1}{d} \sum_{i=1}^{d} \alpha_i A_i \right) x$$

Can we get a better bound with a higher-degree polynomial on the RHS? Let E_k be elementary symmetric polynomials:

$$E_k(y_1,\ldots,y_d) = \binom{d}{k}^{-1} \sum_{I \subseteq [d],|I|=k} \prod_{i \in I} x_i$$

Maclaurin's inequality:

$$(y_1 \cdots y_d)^{1/d} = E_d^{1/d} \le E_{d-1}^{1/(d-1)} \le \cdots \le E_2^{1/2} \le E_1 = \frac{y_1 + \cdots + y_d}{d}$$

OPTSDP constructed using AM/GM inequality. If $\prod_i \alpha_i = 1$,

$$\prod_{i=1}^{d} \langle x, A_i x \rangle^{1/d} \leq x^{T} \left(\frac{1}{d} \sum_{i=1}^{d} \alpha_i A_i \right) x$$

Can we get a better bound with a higher-degree polynomial on the RHS? Let E_k be elementary symmetric polynomials:

$$E_k(y_1,\ldots,y_d) = \binom{d}{k}^{-1} \sum_{I \subseteq [d],|I|=k} \prod_{i \in I} x_i$$

Maclaurin's inequality:

$$(y_1 \cdots y_d)^{1/d} = E_d^{1/d} \le E_{d-1}^{1/(d-1)} \le \cdots \le E_2^{1/2} \le E_1 = \frac{y_1 + \cdots + y_d}{d}$$

Jse Sum-of-Squares to construct relaxations $OPTSOS_k$ for $1 \le k \le d$

 $\mathrm{Opt} \leq \mathrm{Opt} \mathrm{SDP} = \mathrm{Opt} \mathrm{SoS}_1 \leq \mathrm{Opt} \mathrm{SoS}_d$

Trades off computation for accuracy

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max_{x^2+y^2+z^2=1} p(x, y, z) = 1$.

 $p(x, y, z) = C \left[(x + \psi y)(x - \psi y)(y + \psi z)(y - \psi z)(z + \psi x)(z - \psi x) \right]^2$

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max_{x^2+y^2+z^2=1} p(x, y, z) = 1$.

 $p(x, y, z) = C \left[(x + \psi y)(x - \psi y)(y + \psi z)(y - \psi z)(z + \psi x)(z - \psi x) \right]^2$

Hard instance because of high degree of symmetry!

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max_{x^2+y^2+z^2=1} p(x, y, z) = 1$.

 $p(x, y, z) = C \left[(x + \psi y)(x - \psi y)(y + \psi z)(y - \psi z)(z + \psi x)(z - \psi x) \right]^2$

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible solution from relaxations $OPTSOS_k$

Distribution concentrates towards optima as k increases

Takeaways:

- Product of PSD forms has nice structure and generalizes many problems
- Exploiting product structure allows us to write a computationally efficient relaxation with good approximation guarantees

Takeaways:

- Product of PSD forms has nice structure and generalizes many problems
- Exploiting product structure allows us to write a computationally efficient relaxation with good approximation guarantees

Future work:

- Low-rank guarantees of solution from symmetry
- How to generate intermediate Sum-of-Squares relaxations for other high degree polynomial optimization problems?