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Introduction

How to exploit product structure in polynomial
optimization problems

Computational tractability

+

Provable approximation guarantees
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Introduction

Given A = (A1, . . . ,Ad) where Ai � 0, we study the following polynomial

optimization problem on K = R or C:

Opt(A) := max
x∈K, ‖x‖=1

(
d∏

i=1

〈x ,Aix〉

)1/d

Properties:

• High-degree polynomial optimization problem: degree 2d in n

variables

• Compact representation: represented in O(n2d) space

• Polynomial time solution when d is fixed, NP-hard when d = Ω(n)
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Applications and Motivation

Opt(A) := max‖x‖=1

∏d
i=1 〈x ,Aix〉1/d

Kantorovich’s inequality (A1 = Q, A2 = Q−1): Given Q � 0,

max‖x‖=1

√
(xTAx)(xTA−1x) ≤ 1

4

(√
λ1

λn
+
√

λn

λ1

)2
Approximating permanents of PSD matrices [YP20] (Ai = viv

†
i ): Let

M = V †V , vi columns of V .

r(M) := max‖x‖=1,x∈Cn

∏n
i=1 |〈x , vi 〉|

2
, n!

nn r(M) ≤ per(M)

Portfolio optimization (Ai = diag(ri )): Given rates of return over a time

period r1, . . . , rT ∈ Rn
+, maximize expected profit:

maxy≥0,
∑

i yi=1

(∏T
i=1 〈y , ri 〉

)1/d
And more! (Solving systems of quadratic equations, linear polarization

constants, Nash social welfare . . . )
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Our Contributions

Using semidefinite programming (SDP) based approximation algorithms

for general polynomial optimization (Sum-of-Squares):

Compute: SDP with nO(d) vars/consts Approx: Ω( 1
n )

Our relaxation and approximation algorithm that exploits compact

representation:

Compute: SDP with n2d vars/consts Approx: Ω(1)

We also:

• Prove that when d = Ω(n), NP-hard to approximate

• Introduce higher-degree relaxations that trade off computation with

approximation quality

• Exhibit integrality gap instances that show our analysis of our SDP

based relaxation is tight
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Semidefinite Relaxation

max
‖x‖=1

∏d
i=1 〈x ,Aix〉1/d (Opt)

max
X

∏d
i=1 〈X ,Ai 〉1/d

s.t. Tr(X ) = 1, X � 0

min
λ,α

λ

s.t. 1
d

∑d
i=1 αiAi � λI∏

i αi ≥ 1, αi > 0

(OptSDP)

rank-1 relax use AM-GM

dual

Theorem
Let r = rank(X ) ≤ n, γ be Euler’s constant, φ be digamma function

cr (K)OptSDP ≤ Opt ≤ OptSDP

cr (K) =

{
exp(−γ − log 2− φ

(
r
2

)
+ log

(
r
2

)
) > 0.2807 if K = R

exp(−γ − φ(r) + log(r)) > 0.5614 if K = C
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Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If
∏

i αi = 1,

d∏
i=1

〈x ,Aix〉1/d ≤ xT

(
1

d

d∑
i=1

αiAi

)
x

Can we get a better bound with a higher-degree polynomial on the RHS?

Let Ek be elementary symmetric polynomials:

Ek(y1, . . . , yd) =

(
d

k

)−1 ∑
I⊆[d ],|I |=k

∏
i∈I

xi

Maclaurin’s inequality:

(y1 · · · yd)1/d = E
1/d
d ≤ E

1/(d−1)
d−1 ≤ · · · ≤ E

1/2
2 ≤ E1 =

y1 + · · ·+ yd
d

Use Sum-of-Squares to construct relaxations OptSoSk for 1 ≤ k ≤ d

Opt ≤ OptSDP = OptSoS1 ≤ OptSoSd

Trades off computation for accuracy

6
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Example: Icosahedral form

Let ψ be golden ratio, C chosen so that max
x2+y2+z2=1

p(x , y , z) = 1.

p(x , y , z) = C [(x + ψy)(x − ψy)(y + ψz)(y − ψz)(z + ψx)(z − ψx)]2

Hard instance because of high degree of symmetry!

We implement a randomized rounding algorithm to obtain feasible

solution from relaxations OptSoSk
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 2, lower: 0.28197, upper: 1.59397
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Distribution sampled from rounding algorithm
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Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75
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0.25

0.50

0.75

1.00

sin
(

/2
)

k = 5, lower: 0.74235, upper: 1.07797

11



Distribution sampled from rounding algorithm

3 2 1 0 1 2 3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin
(

/2
)

k = 6, lower: 0.79445, upper: 1.00000
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Distribution sampled from rounding algorithm

Distribution concentrates towards optima as k increases
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Conclusion

Takeaways:

• Product of PSD forms has nice structure and generalizes many

problems

• Exploiting product structure allows us to write a computationally

efficient relaxation with good approximation guarantees

Future work:

• Low-rank guarantees of solution from symmetry

• How to generate intermediate Sum-of-Squares relaxations for other

high degree polynomial optimization problems?

14



Conclusion

Takeaways:

• Product of PSD forms has nice structure and generalizes many

problems

• Exploiting product structure allows us to write a computationally

efficient relaxation with good approximation guarantees

Future work:

• Low-rank guarantees of solution from symmetry

• How to generate intermediate Sum-of-Squares relaxations for other

high degree polynomial optimization problems?

14


