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LOW-RANK UNIVARIATE SUM OF SQUARES HAS NO SPURIOUS
LOCAL MINIMA®
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Abstract. We study the problem of decomposing a polynomial p into a sum of r squares by
minimizing a quadratically penalized objective fp(u) = ||Z::1 u? —p||2. This objective is noncon-
vex and is equivalent to the rank-r Burer-Monteiro factorization of a semidefinite program (SDP)
encoding the sum of squares decomposition. We show that for all univariate polynomials p, if » > 2,
then fp(u) has no spurious second-order critical points, showing that all local optima are also global
optima. This is in contrast to previous work showing that for general SDPs, in addition to genericity
conditions, r has to be roughly the square root of the number of constraints (the degree of p) for
there to be no spurious second-order critical points. Our proof uses tools from computational alge-
braic geometry and can be interpreted as constructing a certificate using the first- and second-order
necessary conditions. We also show that by choosing a norm based on sampling equally spaced
points on the circle, the gradient V f, can be computed in nearly linear time using fast Fourier trans-
forms. Experimentally we demonstrate that this method has very fast convergence using first-order
optimization algorithms such as L-BFGS, with near-linear scaling to million-degree polynomials.
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Monteiro method, global landscape, semidefinite programming

MSC codes. 90C23, 90C26, 90C22

DOI. 10.1137/22M1516208

1. Introduction. Burer-Monteiro factorization [9] is a methodology to solve
large-scale semidefinite programs (SDPs) by replacing positive semidefinite (PSD)
variables X > 0 with a factorization X = UU . This automatically enforces the
PSD constraint and lets us find low-rank solutions by choosing the rank of the new
variable U. In addition, this factorization results in a nonlinear optimization problem
that can be solved with first-order methods with fast per-iteration times, especially
when rank(U) is small. However, the resulting problem is nonconvex, so these methods
may get stuck in local optima. We show that this will not happen to the SDP finding
the sum of squares decomposition of univariate polynomials; in this setting all local
optima are also global.

In this work we study SDPs arising from sum of squares optimization [32]. The
ability to represent the cone of sum of squares polynomials as a SDP enables many
applications in polynomial optimization, control, and relaxations of combinatorial
problems [27, 5]. To determine if a polynomial p(x) € R[z]aq is a sum of squares, it
suffices to find a feasible solution to the following SDP:

p(x) =b(x) " Xb(z),

1.1
(1.1) X0,
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where b(x) is a suitable polynomial basis of R[z]4. The constraint p(z) = b(z) " Xb(z)
defines an affine subspace of the space of symmetric matrices, which can be expressed
by matching the coefficients of p(x) with the corresponding coefficients of the poly-
nomial b(z) " Xb(z).

Given the factorization X =UU ", where 41, ..., 4, are the column vectors of U,
we have the explicit sum of squares decomposition

(1.2) p(z) = Zui(ﬂ?)z,

where u;(z) = b(x) " 4;. In other words, (1.2) is a formulation for the Burer-Monteiro
factorization of (1.1) independent of any particular basis. Instead of solving a SDP
to find u;(z), we apply a quadratic penalty to the equality constraint (1.2) to arrive
at the following nonconvex objective:

2

(1.3) fo) =D ui(2)® = p(x)|
i=1
where u = [ul e ur] is a vector of r degree-d polynomials and the norm is induced

by any inner product on polynomials of degree-2d. Then a degree-2d polynomial p(x)
is a sum of r squares if and only if

min u)=0.
uER[z]pr( )

We say that u is a first-order critical point (FOCP) of f,(u) when Vf,(u) =0,
where the derivatives are taken with respect to the variables in u. Since for every p we
can find spurious FOCPs (for example, taking u = 0), it is essential to consider second-
order necessary conditions. If u also satisfies szp(u) > 0, then it is a second-order
critical point (SOCP) of f,(u).

Every local minimum of a function is a SOCP, but the converse is not true when
the function is nonconvex.! If u is not a SOCP, then we can produce a descent
direction using the gradient or Hessian. This leads to efficient first-order methods
[20, 24] that converge to SOCPs. Thus if we can show that at every SOCP f,(u) =0,
these algorithms will always converge to a global minimum. A recent line of work [8, 3]
has shown that for general SDPs under smoothed analysis or genericity conditions,
when the rank of the factorization is above the Barvinok—Pataki bound (roughly the
square root of the number of constraints), there are no spurious SOCPs. Moreover,
the smoothed analysis or genericity conditions are necessary, as [3] constructed a SDP
where only a full-rank factorization can guarantee no spurious SOCPs.

In this paper we consider the setting of univariate polynomial optimization, which
is a class of problems with applications in signal processing, control [35, 17], and com-
puting equilibria of polynomial games [33]. These optimization problems involving
nonnegative univariate polynomials can be transformed (i.e., by a bisection on the ob-
jective value) into feasibility problems for finding the sum of squares decomposition
of a univariate polynomial. The main result of our paper shows that without any ad-
ditional assumptions, the rank-2 quadratic-penalized Burer—Monteiro factorization of
the SDP describing the sum of squares decomposition (1.3) of a univariate polynomial
has no spurious SOCPs.

LConsider, for example, f(z) =3 at x =0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/23 to 73.47.183.48 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

LOW-RANK UNIVARIATE SUM OF SQUARES 2043

THEOREM 1.1. For all nonnegative univariate polynomials p(x) € R[z]2q4 and any
r>2, if ueR[z]] satisfies V f,(u) =0 and V?f,(u) = 0, then f,(u)=0.

In particular, the rank bound in our result matches the Pythagoras number for uni-
variate polynomials [12, Example 2.13].2 In comparison, applying rank bounds for
general SDPs to this setting requires r > v/d (see section 2 for more details).
Theorem 1.1 is proved in section 4, by deriving a series of increasingly stronger
sufficient conditions ((C1), (C2), and (C3)) implying f,,(u) =0 for increasingly larger
classes of u = (uy,uz), eventually proving the result for all u € R[z]?. To illustrate
this, we first show that when r =2 and wu;,us are coprime, Vf,(u) =0 implies that
fp(u) = 0 (the precise statement and proof of this case are in subsection 4.1). Note
that in this simplified setting only the first-order gradient condition is needed. By

computing the gradient, V f,(u) =0 is equivalent to
Vip(u)(v) = <u1v1 + 'U;Q/UQ,U% + ug — p> =0

for all v = (v1,v2) € R[z]?. Since uj,uy are coprime, Bézout’s identity (Lemma 3.3)
implies that we can find v/ = (v],v}) so that

(1.4) uvf 4 ugvh =ui +u3 —p,

thus showing that f,(u) = Hu% +u3 —pH2 = 0. However, we cannot assume a priori
that uq,us are coprime as we are only given p as the input. The main technical
contribution of our proof is how to handle the more involved case when u1,us share
a common factor.

We can also interpret our proof as a certificate. When we choose v’ satisfying
(1.4), we obtain the identity

Vi @)(v) = fp(u).

This implies that f,(u) =0 when V f,(u) =0. In section 5 we generalize this example
to our full proof of Theorem 1.1, showing for all u and p how to find v/ and Q = 0
satisfying the following identity:

V() (v) +(Q, V2 fp(w)) = —fp(u).

From this identity it is clear that if u is a SOCP, then f,(u)=0. This compact form
of our proof allows us to easily extend our result to other problems in section 6.
Since Theorem 1.1 holds for any inner product, we can choose one that enables
efficient computation of Vf,(u). When p is a degree-2d univariate polynomial, an
equivalent way of ensuring the constraint p(z) = b(z) " Xb(z) in (1.1) is to write 2d+1

constraints p(i;) = b(#;) " Xb(#;), where Zq,...,#4 are distinct sample points. This
formulation can be cast into the following least-squares objective:
| 2l ) 0
] —_— T 7 . — T .
(1.5) i fy(U) =5 3 ([0 b~ p)

i=1
This is equivalent to choosing an inner product in (1.3) that evaluates the polynomial
on 2d+1 points. If we choose 2d+1 points on the complex unit circle, we can compute
Vfp(U) in O(dlogd) time using the fast Fourier transform (FFT). In section 7, we
show that this method exhibits linear convergence experimentally using unconstrained
optimization algorithms such as L-BFGS and has near-linear scaling to million-degree
polynomials.

2The Pythagoras number for £[z]a4 is the smallest 7 such that all polynomials in $[x]o4 can be
written as a sum of r squares of polynomials in R[z]4.
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TABLE 1
Time and iterations to convergence for sum of squares decomposition of random nonnegative
trigonometric polynomials. All values are median of 50 runs (with range based on 25th and T5th
percentile). Table 1(a) fizes the rank r and varies the polynomial degree, whereas (b) fizes the poly-
nomial degree and varies the rank .

Degree Time (s) Iterations r  Time Iters FFT Calls
2,000 2(1-2) 340 (306 — 384) 2 50 4124 20618
10,000 6(5-6) 530 (497 — 592) 3 9 896 6272
20,000 9(8 - 10) 632 (587 — 695) 4 6 530 4774
100,000 53 (46 — 59) 1126 (980 — 1248) 5 5 446 4900
200,000 160 (139 — 174) 1375 (1212 — 1532) 6 5 396 5142
1,000,000 1461 (1212 — 1532) 2303 (1934 — 2437) 7 5 374 5618

(a) Varying degree, r = 4 (b) Varying r, degree 2d = 10, 000

1.1. Contributions. In summary, our main contributions in this paper are:

1. Proving that the quadratic penalty form of Burer—-Monteiro factorization for
univariate polynomial sum of squares decomposition has no spurious SOCPs
(Theorem 1.1). Our result holds where the rank of the factorization is at
least 2, matching the Pythagoras number for univariate polynomials. This is
in contrast to previous work requiring rank r > v/d in addition to genericity
conditions or smoothed analysis for general SDPs, or showing that no spurious
local minima exist in statistical problems.

2. Developing a new framework for proving that there are no spurious SOCPs
for a quadratic-penalized factorized SDP, by constructing a certificate (5.3)
using the first- and second-order necessary conditions. This certificate repre-
sentation helps us extend our results to projection onto the sum of squares
cone (Corollary 6.1), certifying nonnegativity on intervals (Corollary 6.2) and
sum of squares optimization.

3. Showing that by choosing a special norm (based on the evaluation of the
polynomial on points on the unit circle), the full gradient of the objective can
be computed in near-linear time using FFTs. It enables us to efficiently scale
first-order methods to instances with millions of variables (Table 1a). This is
possible because our result (1.1) is independent of the penalty function.

2. Background and related work. Let S, be the space of n X n symmet-
ric matrices. Given A; € S,,, we consider the standard-form semidefinite feasibility
problem with variable X € S,,:

(Ai, X) =bi,

SDP
( ) X =0

Nonconvex formulation. Burer and Monteiro [9] introduced the nonconvex refor-
mulation X =UU " to enforce the semidefinite constraint, where U € R™*":

(NSDP,) (A, UUT) =0b;.
This motivates the following least-squares formulation:

(SDPLSr) Uén]Rif{lxr ZH<AiaUUT>—bi”2'
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If in addition to the equality constraints in (SDP) one wishes to minimize the objective
(C, X)), the works [10, 3, 14] formulate an augmented Lagrangian problem, where the
term A(C,UU ") is added to the objective of (SDPLS,).

General SDP rank bounds. Burer and Monteiro subsequently showed in [10] that
when 7 > n, there are no spurious SOCPs to (SDPLS,). This result is in fact tight
and [3] constructed an explicit instance where if r =n — 1, one can find a SOCP that
is not a global minimum. Thus for general SDP feasibility, additional conditions on
the objective or analysis must be imposed. Then the rank bound can be improved to
the maximum rank of extreme points of the section of the PSD cone with m affine
constraints. This maximum rank is O(y/m), also known as the Barvinok—Pataki
bound [2, 34]. In the same work, Burer and Monteiro [10] showed that when a linear
objective is added to (SDP) and (NSDP,), if r 2 /m, any local minimum of (NSDP,)
is also a local minimum of (SDP) with an additional rank-r constraint. Then they
showed that such a local minimum is either an optimal extreme point or contained
within the relative interior of a face of the feasible set of (SDP), which is constant
with respect to the objective function.

Subsequent work [3] then showed that if C' is generic enough, all local minima
of (NSDP,) are global minima of (SDP) (see Cifuentes and Moitra [14] for more
references). In summary, this line of work requires generic constraints, and in addition
either smoothness of the constraint set [7, 8] or smoothed analysis [3, 14, 13]. In
addition, [40] showed that when r is smaller than /m, SOCPs are not generically
optimal.

Structured SDPs. Problems such as matrix completion and matrix sensing can
be expressed as instances of (SDPLS,). There has been a lot of recent interest in
studying the global landscape of matrix sensing problems [22, 4, 21]. A recent line of
work [21, 22, 1] shows that for certain statistical problems aiming to recover a signal
in the form of a low-rank matrix corrupted by noise (where the SDP has a rank-1
solution in the noiseless setting), there are no spurious SOCPs when the noise level is
low enough. Similar results [21, 29, 39] can be obtained for matrix sensing, where a
low-rank matrix is reconstructed from linear measurements called sensing operators.
See [11] for a survey of these problems. In summary, for a wide range of statistical
problems, local minima are also global minima. These results are either satisfied
with high probability or require that the sensing operators A; satisfy the restricted
isometry property.

Sampling basis. The sampling or interpolation basis for sum of squares optimiza-
tion is studied in [30] and [15]. Informally, they showed that if the sampled points
are “generic” enough, the problem expressed in the sampled basis is equivalent to
the original problem. This idea is also used for univariate polynomial optimization in
[31, 26].

Univariate polynomials. Univariate/trigonometric polynomial optimization and
their applications are studied in [41, 35, 17] and the references therein. The decompo-
sition of a nonnegative trigonometric polynomial into a sum of squares is also known
as its spectral factorization [17, Theorem 1.1]. Previous methods for spectral fac-
torization either require finding all n roots of the polynomial, solving linear systems
of order n, or using an approximate O(N log N) FFT-based algorithm by sampling
N > n points [41, 17]. Design problems involving constraints on nonnegative trigono-
metric polynomials can be formulated as SDPs. Due to their special structure, [35]
used FFTs to speed up per-iteration complexity for interior point methods solving
these SDPs to O(n?).
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The set of all X satisfying (1.1) is known as the Gram spectrahedron of p(z).
As the bounds developed for general SDPs depend on the rank of extreme points of
the Gram spectrahedra, one may wonder if this quantity can be tightly bounded (i.e.,
better than the Barvinok—Pataki bound) in the special case of univariate polynomials.
A recent work by Scheiderer [36] showed that this is not possible. If p(z) is a suf-
ficiently general positive univariate polynomial of degree d, its Gram spectrahedron
has extreme points of all ranks up to O(V/d).

2.1. Notation. Let R[x]; be the space of univariate polynomials of degree at
most d. Let u(z) € R[z]]; be a vector of r polynomials where each u;(z) is a polynomial
in R[z]q. Let o : R[z]; = R[z]2q be the quadratic map defined by v(z) — >"1_, v;i(x)?,
and X[z]a4 := cone(o(R[z]})) C R[z]aq be the cone of sum of squares univariate poly-
nomials of degree-2d. A binary form is a homogeneous polynomial in two variables.
Let R[z]a be the space of binary forms of degree-d and X[z]|2q C R[z]2q be the space
of sum of squares binary forms of degree-2d. R[z]q and X[z]2q are isomorphic to R[x]4
and X[z]24, respectively.

2.2. Univariate polynomials. Any monic univariate polynomial p € R[z]4 can
be uniquely factored as p(z) = Hf-l:l(x — o), where a; € C are the roots of p. Given
univariate polynomials p, g, and ¢, we define an equivalence relation p = ¢ (mod g)
if there exists w € R[z] such that p= ¢+ wg. We say that g is a divisor of p if p=0
(mod ¢). In addition, if g is also a divisor of ¢, then we say that g is a common
divisor of p and q. Let ged(p,q) be the greatest common divisor of p and ¢, which is
the common divisor with the highest degree. By the unique factorization of p and g,
ged(p, q) is unique up to multiplication by a scalar. We say that p and g are coprime
if ged(p,q) =1.

Any binary form p € Rlx]q can be factored as p(z1,z2) = H?Zl(aixl — Bixa),
where (qa;, 3;) € C2. This factorization is unique up to multiplication of (v, 3;) by a
scalar. The equivalence relation p = ¢ (mod ¢g) and ged on binary forms are defined
analogously to those on univariate polynomials.

3. Preliminary results. Since the polynomials we are optimizing over have
fixed degrees, to better keep track of this degree we will work with homogeneous
polynomials (forms). In subsection 3.1 we derive expressions for the first- and second-
order necessary conditions ((3.3) and (3.4)). Next, in sections 3.2 and 3.3 we review
some results on binary forms and prove our main lemma, Lemma 3.7. Particularly
important is our decomposition of u in Proposition 3.4.

3.1. First- and second-order necessary conditions. First we derive expres-
sions for the gradient and Hessian of fj,(u). In addition to the binary forms we consider
in this paper, the derivations in this section also hold for general multivariate forms.
For any inner product on forms (-,-) : R[z]2q x R[z]2q — R and its associated norm
Il : R[z]2a — R, the objective function is written as

2

To find the gradient and Hessian of the objective, we compute the first- and second-
order terms of f,(u(x)+ ev(z)) to obtain
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(3.1) 1 ufy(u(@)(v(2) = <Zuj<m>vj<x>, > i) = p<x>> :

(32 VAL @)@ v() = <Zvj<x>2,zuj<w>2 —p<x>>

+2|| 3w () (@)

Given a vector of polynomials u(z) € R[z]y, , we define the linear map Ay () : R[z]g, —
R[‘r]ch +dg a8

For example, we can write o(u) = Ay(u). When n =2, A, is up to a constant the
map induced by the Sylvester matrix [38]. If dy = da, the determinant of A, is up
to a constant the resultant of uy and ws; it vanishes if and only if u; and uy share a
common divisor. Next we concisely define SOCPs using this new notation.

DEFINITION 3.1. We say that u € R[z]] is a SOCP of f,(u) if its gradient is
zero and its Hessian is positive semidefinite. In other words, for all v € R[z]],

(33) 1Valn () = (Au(v), o(w) ~ p) =0,
(3.4) LV, ¥) = (o(v), o) ) + 2| Au(0)]* 2 0.

Remark 3.2. The first-order condition (3.3) alone is insufficient to guarantee
global optimality, even when p is generic. For example, u=0 is always a FOCP, but
is spurious if p # 0. Since we can always construct spurious FOCPs, even when p is
generic, we need to consider the second-order conditions.

3.2. Pairs of binary forms. In this section we present some results on
pairs of binary forms that will be helpful for characterizing the sets® Im(A,) and
cone (o (ker(Ay))) and proving Theorem 1.1 in section 4. From now on we assume
that =2 and u= (u1,us).

The following lemma is a restatement of Bézout’s lemma for univariate polyno-
mials using our notation. It states that any form in R[z]aq is in the image of the map
Ay, as long as u; and ug are coprime. We provide a proof below for completeness.

LEMMA 3.3. Given u= (uj,us) € R[Jc]ﬁl and dy > dy — 1, consider the map Ay :
R[z]3, = Rlz]a, +d,- Then uy and uy are coprime if and only if Im(Ay) = R[z]d, +d,-

Proof. For the “if” direction, when u; and us are not coprime, they share a
common factor w with degree at least 1, and so does every form in Im(A,). Thus
Im(A,) is not equal to R[z]d, +d,-

Next we prove the “only if” direction. Since Ay(v) = viug + vause, for every
v € ker(Ay) we have

(3.5) UV = —UgV3.

3For the more algebrically inclined reader, the sets Im(Ay) and ker(Ay) are the graded parts of
the ideal [16, Definition 1.4.1] and syzygy module [16, Definition 10.4.3] of u, respectively.
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If dy = dy — 1, since u; and ug are coprime, by evaluating (3.5) on the roots of u; and
us we can conclude that v; = v =0 and dim(ker(Ay)) =0. Otherwise if ds > dy, this
implies that uy is a divisor of vy and us is a divisor of v;. So there exists wy,ws €
R[z]da,—a, such that vy = wiug,v2 = wouy. Then (3.5) becomes (w1 + wo)urus =
0, implying that wy = —w;. Thus ker(Ay) = {(wug, —wu1) | w € R[x]ay,—a, } and
dim(ker(Ay)) = dim(R[z]g,—d, ). In summary, ds > dy—1 implies that dim(ker(Ay)) =
ds + 1 — dy. Therefore, by the rank-nullity theorem,

dim(Im(Ay)) =2dim(R[z]q,) — dim(ker(Ay)) = dim(R[z]d, +d,)-
Since Im(Ay) C R[z]a,+d, and these two sets have the same dimensions, they must
be equal. 0

In particular, Lemma 3.3 motivates the decomposition u; = u}g§ and us = ubg,
where u} and u}, are coprime and § = ged(ug,uz). Indeed when § =1 we can apply
the sufficient condition (C1) in subsection 4.1 to show that u is not a SOCP. When
ged(g,o(u’)) =1 we can apply (C2) in subsection 4.2. Otherwise we need to partition
the roots of § = gh by whether each root is also a root of o(u’), then apply (C3) in
subsection 4.3.

PROPOSITION 3.4. Given u = (u1,u2) € R[x]3, we can always find g € R[z]m,
h € R[z]x, and v’ = (u},ub) €R[z]3_ .\ so that

(u1,ug) = (u’lgh7u’29h)7
ged(ug, uz) = gh,
ged(uy, up) =1,
ged(0(w'), g) = ged(w”* +u3”, ) =1,
r is a (possibly complex) root of h=>r is a root of o(u’).
Moreover, this decomposition is unique up to multiplication by constants.

Proof. Let g =ged(uy,us) so that u} =wu;/§ and uh =us/§. By partitioning the

roots of § we can decompose § = gh, where g has no common roots with o(u’) and

every root of h is also a root of o(u’). The uniqueness of this decomposition follows
from the unique factorization theorem for binary forms. ]

We demonstrate this decomposition with an example.

Ezample 3.5. Let uy(z1,72) = (22 + 23)2(223 + 23)2? and ua(z1,22) = (23 +
23)%(223 +23)z122. Then the decomposition in Proposition 3.4 gives u} = z1, u = za,
g=m1(222 +22), and h = (22 + 23)2.

The following observation about the roots of o(u’) and h is useful in our proofs.

PROPOSITION 3.6. In the decomposition of Proposition 3.4, both o(u’) and h have
no real roots and deg(h) is even.

Proof. If o(u’) has a real root #, then v} (2)? +u5(#)* =0. Thus & is a root of u}
and uj, contradicting the fact that ged(u),u)) =1. Thus every root of h is complex,
and h must have even degree. ]

3.3. Main lemma. In our proof of Theorem 1.1 we will use the following main
result, which may be of independent interest.

LEMMA 3.7. Given binary forms g € R[z|m, q € X[x]2d—2m, and p € X[x]aq, if g
and q are coprime, then there exists a sum of squares binary form s € X[x]am such
that
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p=sq (mod g).

The main ingredient of the proof of Lemma 3.7 is a result stating that any univariate
polynomial a(z) strictly positive on the real zeros of g(x) can be written as a single
square* modulo g(z).

PROPOSITION 3.8. Let g(z) and a(z) be coprime univariate polynomials where
deg(g) = m. If a(z) > 0 for all {x € R | g(x) = 0}, then there exists a polynomial
t € Rlz]y, such that

a=t* (mod g).

This result is related to Schimiidgen’s certificate [37], which states that if a polynomial
is strictly positive on a compact semialgebraic set, then it has a Positivstellensatz
certificate in terms of the equations describing the set. We prove Proposition 3.8
using Hermite interpolation on the series expansion of \/a(x) around the roots of g.

Proof of Proposition 3.8. Let r; be the roots (possibly complex) of g(x), each
with multiplicity n;, so that )",n; = m. Consider the Taylor series expansion of
f(z) = v/a(x) centered at r;. Since a and g do not share any common roots as
they are coprime, this Taylor series is well defined around any root of g. Let the
polynomials 7;(x) be the first n; terms of the Taylor expansion of f(z) centered at
r;. The polynomials «; have real coefficients if r; is real, and if r; and r; are a
pair of conjugate roots, v; = ¥;. We can then use the Chinese Remainder Theorem
[18, section 7.6] to construct the unique polynomial t(z) with real coefficients and
deg(t) < m such that

for all 1, t(x) = %-<x) (mOd (3;‘ _ Ti)m).
By construction, for all roots r; of g and any k=0,...,n; — 1, we have

dk dk dk
a1 = glra) = gt ()

For each root r;, we have

Va(ry) = f(ri) =~i(r:) =t(r)

and
d d d d
—a(ry) = 2f(r) — f(ri) = 2t(rs) —t(r;) = —t(r;)%
& o) =20 1) = 21(r) () = t(r)
By induction we get (Z—kka(ri) = %Zt(m)2 for k=0,...,n; — 1. This is a generalization

of Hermite interpolation for a variable number of consecutive derivatives at each
point [23, section 17.6].° Since a(z) and ¢(x)? match at all the roots of g (including
derivatives up to the multiplicity of the root), we have shown that a =2 (mod g). O

Then we prove the affine version of Lemma 3.7.
4The number of squares is not important in our proof of Lemma 3.7; we only need the property
that a(z) can be written as a sum of squares modulo g(z).

5This is referred to as Birkhoff interpolation in [23], and the existence of a unique interpolating
polynomial crucially depends on the use of consecutive derivatives.
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LEMMA 3.9. Let g,p, and q be univariate polynomials where deg(g) = m, deg(p) =
2d, and deg(q) =2d—2m, p and q are sum of squares, and g and q are coprime. Then
there exists a sum of squares polynomial s € X[x|a, such that

p=sq (mod g).

Proof. Since ¢ is coprime with g, Lemma 3.3 (after reducing ¢ modulo g) guar-
antees that there exists a polynomial a € R[z],, such that

(3.6) ag=1 (mod g).

We have g(x) > 0 for all real roots z of g, since ¢ is nonnegative and coprime with
g. Thus a(x) > 0 for all real roots = of g, by evaluation of (3.6) at these roots.
Since a(x)q(z) =1 for all roots x of g, a is also coprime with g. Then we can apply
Proposition 3.8 to find ¢ € R[z],, so that a =t*> (mod g). Multiplying both sides of
(3.6) by p, we get

p=t’pg (mod g).

Since #2p is a sum of squares, we can reduce each squared polynomial modulo g to
get s € X[z]am. o

Finally we prove Lemma 3.7, which is the projective version of Lemma 3.9.

Proof of Lemma 3.7. We first apply a linear change of coordinates so that (0,1)
is not a root of g, p, or gq. Then let ¢'(z) = g(x,1), p'(x) =p(x,1), and ¢'(z) = q(z, 1).
Since this dehomogenization procedure preserves the degree of g, p, and ¢,% we can
apply Lemma 3.9 to find polynomials s’ € X[z]a,, and t' € R[z]a4—m, so that

p/ — Slq/ + t/gl.

We can then homogenize by letting s(xy,r2) = x3™s'(x1/x2) and t(wy,22) =
2247™ ¢ (11 /25). Thus s is also a sum of squares and
D =sq+tg. 0

4. Main theorem and proof. In this section we prove Theorem 1.1, which
states that for univariate polynomials, a rank-2 decomposition has no spurious second-
order critical points. Using the decomposition in Proposition 3.4, we first prove sim-
plified versions of Theorem 1.1 in sections 4.1 and 4.2, before proving the full version
in subsection 4.3.

4.1. Coprime case: g =1, h = 1. This is the case explained in the introduc-
tion. In the decomposition of Proposition 3.4, g = h = 1 implies that w; and wus
are coprime. This happens generically and implies that for a fixed p, the gradient
condition (3.3) is sufficient for almost all u.

PROPOSITION 4.1. Suppose u € R[z]% and p € X[z]2q satisfies Vf,(u) =0. If
(C1) pelm(Ay),
then we have fp(u) =0.

6If the degree of g is not preserved after dehomogenization, the degree of ¢’ after applying
Lemma 3.9 could be larger than 2d — m. For example, if d=m =2, g=z122, p= (2&;% + x%)x%, and
g=1, we get that s’ = (2 +1)? and ¢ = —23 after dehomogenizing and applying Lemma 3.9. This
issue will not occur if the dehomogenization is degree-preserving.
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Proof. Since p € Im(Ay), we can find v € R[z] so that Au(v) =0c(u) —p. Eval-
uating the gradient condition (3.3) at v, we conclude that f,(u)=|o(u) —plI>=0.0

Since Lemma 3.3 implies that Im(Ay) = R[z]2q if and only if u; and ug are coprime,
we have shown that when g = h = 1, we always have p € Im(A,) and there are no
spurious FOCPs and SOCPs.

4.2. Special case: h=1. When u; and uy are not coprime, o(u) — p might
not be in Im(A,) and we cannot use the argument in Proposition 4.1. Thus we need
to use make use of the Hessian condition (3.4).

PROPOSITION 4.2. Suppose u € R[z]4 and p € X[z]2q satisfies Vf,(u) =0 and
V2, (u) = 0. If
(C2) p € Im(Ay) + cone (o (ker(Ay))) ,

then we have f,(u)=0.

This means that if for all u we can decompose p = g+, where ¢ € Im(A,,) and r €
cone (o (ker(.Ay))), then f,(u) has no spurious SOCPs. In particular, similar to how
Im(A,) is related to the gradient condition (3.3) in Proposition 4.1, cone (o (ker(.Ay)))
is related to the Hessian condition (3.4). The following result states that (C2) is
satisfied if h =1.

LEMMA 4.3. Given u € R[z]3, if in the decomposition of Proposition 3.4 we have
h=1, then for every p € ¥[z]aq,

p € Im(A,) + cone (o (ker(Ay))) .

Proof. We want to show that any p(x) € X[z]a4 can be written as the sum of poly-
nomials in Im(A,) and o(ker(Ay)). Therefore it is useful to have a characterization
of these sets. Lemma 3.3 tells us that

Im(Au) = {Au’ (V)g | ve R[x]d}
={wg | w e R[z]2d—m} -

Since for all ¢t € R[z]n, we have (—tuj,tu)) € ker(Ay),

{tQU(u') |t e R[m]m} Co(ker(Ay)),
(4.1) {so(u’) | s € [z]2m} C cone(o(ker(Ay))).

Since o(u’) is coprime with g by assuming h = 1, we can apply Lemma 3.7 to show
that there exists w € R[z]2d—m and s € X[x]2m such that p = so(u’) + wg. O

Finally we prove Proposition 4.2.

Proof of Proposition 4.2. The condition (C2) implies that there exist v €
R[z]3,w® € ker(A,) such that

p=Aulv)+ 3 o(w).

Since V f,(u) =0, (3.3) implies that

(4.2) (Au(v),o(u) —p)=0.
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Since V2 f,(u) = 0 and w(® € ker(Ay), (3.4) implies that

(4.3) <a(w<i>), o(u) —p> >0.
Combining (4.2) and (4.3) gives

(4.4) (p,r() — p) > 0.
Since V fp(u) =0 implies that

we have
fpw) = [lo(u) = p|* = (o(u) = p,o(u) — p) = — (p,o(u) — p).

This together with (4.4) implies that f,(u) <0. However f,(u) is always nonnegative,
and thus it must be 0. a

4.3. General case. Lemma 4.3 alone is insufficient to prove Theorem 1.1. It
is possible for § = ged(ug,us) to share complex roots with o(u’) (recall from Propo-
sition 3.6 that all roots of o(u’) are complex), as seen in Example 3.5. Hence the
argument in the proof of Lemma 4.3 fails as § is not coprime with o(u’). To get
around this issue, we will derive the sufficient condition (C3) in Proposition 4.4, a
stronger version of (C2), by carefully examining the Hessian condition (3.4). Roughly
speaking, Proposition 4.4 shows that we can replace every root of h (which must be
complex) with any real root.” Since o(u’) has no real roots, gz¥/h is now coprime
with o(u’), and we can then complete the proof by following the argument in the
previous section.

PROPOSITION 4.4. Suppose u € R[z]3 and p € X[r]2a satisfies Vf,(u) = 0
and V2 f,(u) = 0, with the decomposition in Proposition 3.4, where k = deg(h) and
uz/h = (ujget, upgal). If

(C3) petm (Ayn ) +cone (S (ker(Ay)))

then fy(u)=0.

Proof. We first prove that if r € Rlz]e is a common divisor of o(u’) and § =
ged(ug,ug), then

(4.5) (Au(b)z]/r,0(u) —p) =0 for all b= (by,bs) € R[z]3.

Given any by, by € R[z]q and n € R, let vy = nafuy/r + by and vy = —nafui /r — by.
We have

(4.6) Au(v) = ul(nxliuQ/r +by) — ug(nxliul/r + b1) = u1by — uabs,

(4.7) o(v)= an%e(uf +u3)/r* + 2n$€(b1u1 + bouy) /7 + (b3 + b3).

Since r is a divisor of both o(u’) and §, 22¢(u? +u2)/r? = 2

of g. Thus 2% (u? + u3)/r? € Im(A,) and we have

(Pt (uf +ud) /1%, o(u) — p) =0.

o(u’)§?/r? is a multiple

"Without loss of generality we choose this real root to be 1.
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Therefore, the Hessian condition (3.4) implies that for all n € R,
(4.8) 27 <(b1u1 + bQUg)l‘{/T,O’(u) —p> + <b§ + bg,a(u) — p> + 2||urby — uzby H2 > (.

This implies the identity (4.5); otherwise there exists 1 such that (4.8) is negative.
Since o(u’) and h have no real roots (Proposition 3.6), we can write h = Hfﬁ i,
where each r; € R[z]z is a quadratic form corresponding to the product of a pair of

complex roots. We first apply the same argument from above to show that
(4.9) (Au(b)a?/ry,o(u) —p) =0 for all b € R[z]3.

Next we show that (4.9) implies that

(4.10) (Au(b)zt/(rir2),o(u) —p) =0 for all b € R[z]3.

Similar to before, let r = riry so we have the identities (4.6) and (4.7) as before.

Since 7o is a divisor of both o(u’) and §/ry, 2§ (u’)§?/(rirs)? = x?%‘;l)&% is a

multiple of §/r1. Thus z§o(u’)§?/(r1r2)? € Im <Aux§/,.1) and we then use (4.9) to
show (4.10).

Thus by iteratively applying the previous arguments,® we show that for every
1<k <k/2 and b € R[z]3,

&
<Au(b)x§k// Hm,a(u) — p> =0.

This is because each r; is a divisor of o(u’) and Hiil r; divides §. From here we can
finish our proof by following the same steps as in the proof of Proposition 4.2. ]

With Proposition 4.4 we can prove Theorem 1.1, by showing that every p € X[z]|2q
has the required decomposition.

Proof of Theorem 1.1. Since (Aw (b)gzf,o(u) — p) =0 for all b € R[z]3 and v}, uj
are coprime, Lemma 3.3 implies that (wgaz}, o(u) — p) =0 for all w € R[z]. Since o(u’)
has no real roots (Proposition 3.6), it is coprime with 2¥. As o(u’) is coprime with g,
it is also coprime with gz¥. Thus Lemma 3.7 tells us that there exists a sum of squares
polynomial s such that p = so(u’) (mod gz¥). Since so(u’) € cone(o(ker(Ay))) by
(4.1), we are done. |

5. Geometric interpretation and certificates. In this section, we provide
a geometric interpretation of our proof of Theorem 1.1, which allows us to turn the
proof into a certificate. In order to prove that there are no spurious second-order
critical points when minimizing f,(u) = [lo(u) — p||*, we have to show that for all
u € R[z]” and for all p € X[z], Vf,(u) = 0 and V?f,(u) = 0 imply that f,(u) =0
and p = o(u). One way to tackle this problem is to fix p then characterize the set
of u satisfying the second-order critical point conditions. This is the approach taken
by [3] and related works, where they used an argument based on the dimension of
the subspace generated by the constraints of the SDP. However, the SOCP conditions

8The argument here is subtle because although every root of h is a root of o(u’), a root may have
higher multiplicity in h than in o(u’). For example, it is possible that h = (z? + 22)2 but o(u’) =
x% + z% In this case, to obtain (4.5) we need to iteratively “peel off” the factors r4 =rs = z% + x%,
by first proving (4.9) and then proving (4.10).
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{p € Zz] | V2f,(u)

Y

1
0}

{p e R[z] | Vfy(u) =0}
Fic. 1. The geometric interpretation.

are nonconvex in u. In order to do better than a dimension-counting argument, our
proof takes a different approach. If we fix u, the set of all p satisfying the gradient
condition (3.3) is an affine subspace, whereas the set of all p € ¥[x] satisfying the
Hessian condition (3.4) is a convex semidefinite-representable set. We need to show
that these two sets intersect at only one point, p =oc(u) (see Figure 1).

Our proof can be interpreted as constructing a certificate to show that these two
sets only intersect at one point. This is true if and only if the following optimization
problem has a zero optimal objective value:

(5.1) max  min o(w) = pl* + Vi, (w)A) +(Q, V2, (w)).

peX[z] Q>0, AER[z]"

Expanding the gradient and Hessian, we get
Vip()(X) = (Au(A),0(u) —p),
, 2
(@72 h(0) =3 (v D). ow) ~ p) +2 [ Auv )],

where Q = Ziv(i)v(i)—r. If for every p € ¥[z] we can find A and Q such that

(5.2) VA +(Q, V2 fp(w)) = = [lo(w) - pl*,

then the objective of (5.1) is at most 0 and cannot be positive, showing that p=o(u)
is the only point satisfying the gradient and Hessian conditions. Since Ay(u)
o(u), this is equivalent to finding A and @ such that Vf,(u)(A) 4+ (Q, V2f,(u))
(p,o(u) —p).

5.1. Warmup. As a warmup, we construct such a certificate if A~ = 1 in the
decomposition of u in Proposition 3.4. Recall that in this case g = ged(u1,us), u; =
gul,uz = gub, and o(u’) is coprime with g € R[z]m. Therefore, by Lemma 3.7, there
exists s € X[z]am such that p=so(u’) (mod g). Let

12 ’o
Q—s[ Uo Uluz}
= 2.

!,
—Ujuy Uy

As both o(u) and p — so(u’) are divisible by g, Lemma 3.3 implies that there exists
A such that:

Au(A) = —0c(u) +p—so(u).
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These values of A and @ give

V(W) (A) = = [lo(w) = pl* = (so(u’),o(w) = p),
(Q,V2fp(w)) = (so(),0(u) - p),

and hence taking the sum we have the identity (5.2).

5.2. Certificate. Now we can present the proof of Theorem 1.1 in the form of
a certificate. First we decompose u € R[m]ﬁ as in Proposition 3.4. Since g is coprime
with o(u’) and o(u’) has no real roots, gz¥ is also coprime with o(u’). Then by
Lemma 3.7, there exists s € X[z]a(m+k) such that p = so(u’) (mod ga¥). Next we
apply Lemma 3.3 to find b” € R[z]2 so that

k
Q%Au(bo) =2g2F Aw (b°) =p — so(0').

As in the proof of Proposition 4.4, we write h = Hfﬁ r;. For every 1 <j <k/2, since

r; divides o(u’), by Lemma 3.3 there exists b’ € R[z|% so that

J i—1
2925 Ay (b7) Hri = —gzxfk_4(3_l)g(u') H 2.
i=1 =1

Given any a = (a1,a2) € R[z]3, we define a := (a2, —a;). Given a parameter 7 € R,
for every 0 <j <k/2let n; = 773'7 and

J .
vi= nj?”g:p’f’” a’ H i+ 77]-_1/215].
=1
Then define
L 2
Q=sw'd +- Zvjva,
n=
A=—(1+n""g/om)u
Since Ay (') =0, o(®) = o (1), o(b’) = o(b?), Ay (b’) = Ay (b?), and nj4; =3

J b
we have

k/2 k/2 j J
1 . 1 A Y . _ .
2= (”39%% o) [T+ 2m0et > Au () [T, ”’“’”)
j=0 i=1

j=0 i=1
k/2
=p—so(W)+ 1 pprio()+07 1Y 7 te(bY),
j=0
Aua(vi) = P A, (B),

J

k/2
(Q, V2 fp(w)) = <p + 0 2o (@) + 07> 0 (b)), o(u) — p>
§=0

k/2
-1, —1 iJ
+> 2n 'y HAu(b )‘

j=0

Vp(@X) = =1 +0" i /041) (0(u),0(u) = p).

2

i
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So we have proven the identity

(5.3) Vp(u)(A) +(Q, V2 f,(u)) =~ [o(u) —p||”
k)2
3 nlm (<U(bj),a(u) )+ HAU(BJ')H2) .

Jj=0

This implies that for every n > 0 and every u that satisfies Vf,(u) = 0 and
V2 fp(u) =0,

k/2

Hdu»—mﬁg§jn<y+ﬂ(@ﬂwxaoo—p>+2HA¢B%W)-
j=0

Since b’ does not depend on 1, we can make the right hand side arbitrarily small by
taking the limit 77 — co. Thus we can conclude that ||o(u) — p|| =0.

6. Extensions and generalizations. The certificate interpretation discussed
in the previous section allows us to generalize Theorem 1.1 to other settings, such as
projecting onto the sum of squares cone, certifying nonnegativity on intervals, and
imposing linear constraints on coefficients of univariate sum of squares polynomials.

6.1. Projection onto the sum of squares cone. A natural question to con-
sider is what happens to the optimization landscape of f,(u) when p cannot be ex-
pressed as a sum of squares. In this case the objective f,(u) can never be zero, but
we show that all SOCPs have the same objective value, which is the projection of p
to the sum of squares cone.

COROLLARY 6.1. For all u € R[z]3 where V f,(u) =0 and V2f,(u) = 0, o(u) is
the projection of p to the sum of squares cone with respect to the inner product used
to define fp,. In other words, fy(u)=|c(u) —pl><llg—pl? for all g € S[z]q.

Proof. Corollary 6.1 can be proved by a simple modification of the certificate
(5.3). Although p is no longer a sum of squares, we can use (5.3) to show that for all
q € E[:E]Zda

(o(u) —q,0(u) —p) <0.

This is exactly the variational characterization of projection onto the convex cone
Z[.’E]zd. 0

6.2. Certifying nonnegativity on intervals. Suppose we wish to certify that
a univariate polynomial p(z) is nonnegative in a union of intervals I = U:i1 I; where
I ={x € R|a; <z <p;}. This can be accomplished by finding a decomposition

p) =Y ala)ai(a),

where a;(z) are fixed polynomials depending on the intervals I; and ¢;(z) are sum of
squares polynomials (see, e.g., [5, Theorem 3.72]). This objective can also be written
as a nonconvex optimization problem by the decomposition g;(x) = >-7_; u;j(x)* =
o(u;). If we let
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then the objective fzf (u) and its gradient and Hessian can be written as
= i a;o(u;) —
VI <Z a;Au, (vi),s(u) - p> ,
V2f <Zal o(vi), —p>+2 iaiA
i=1

COROLLARY 6.2. Suppose r > 2 and we are given p = > .~ a;q; € R[x]2a+k,
where a; € Rlz]x, qi € S[z]aa. For all u € Rlz]7*" such that Vfl(u) = 0 and
VfI(w) =0, f1(u)=0.

Proof. We can prove this by constructing a certificate of the form (5.3). For each

i we can choose v; =0 for all j # 7, then follow the reasoning in subsection 5.2 to find
A; and @; such that for all n; >0,

(6.1) Vi) (X) +(Qi, V2 fL(w)) = (aigi, s(u) — p) + Ci,

where C; is a value that can be made arbitrarily small by taking a limit. We then
sum (6.1) for all i, along with the equality V f!(u)(—u) = — (s(u),s(u) — p) to get
|s(u) — p|| <>, Ci, which implies that fI(u) = [s(u) — p|I>=o0. 0

6.3. Sum of squares optimization. More generally, we can consider the prob-
lem of finding a feasible point in the intersection of the cone X[x]oq with any affine
subspace. This allows us to solve sum of squares optimization problems involving
univariate polynomials. Let B : R[z]zq — R™ be a linear map. Given b € R™,
we want to find p € X[z]2q so that B(p) = b. This is equivalent to minimizing the
quadratic-penalized problem

(6.2) f5(u) = [|B(o(u)) - b.

COROLLARY 6.3. Suppose there exists p € X[x]aa such that B(p) = b. Then
Vfs(u) =0 and V?fg(u) = 0 implies that fz(u)=0.

Proof. The gradient and Hessian of the objective (6.2) can be written as

2

= lls(w) = p|I*,

2

V() = (B(AWY), Blo(w) ~ ),
V2 fs(u)(v,v) = (B(o(v)), Blo(w) ~ p)) + 2| BA)

Thus by the linearity of B we can use the same construction as in the certificate (5.3)
to show that fz(u)=0. 0

7. Implementation and experiments. In this section we describe an efficient
implementation of finding a sum of squares decomposition of trigonometric polyno-
mials. A trigonometric polynomial of degree-d is defined by 2d + 1 coefficients and
has the form

p(t)=ao+ Y (axcos(kt)+ a_gsin(kt)).

ES
Il &
—
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By the substitution cos(t) = ﬁ—fﬁ and sin(t) = %, p(x) becomes a rational function
with the denominator a power of 14 22 and the numerator a degree-2d polynomial in
x. Thus certifying the nonnegativity of the numerator is equivalent to certifying the
nonnegativity of p(t). By this correspondence the result of Theorem 1.1 also applies
to trigonometric polynomials.

Since the proof of Theorem 1.1 does not depend on the norm used for f,(u) =
Hp— > uf‘ 2, we can choose one most suitable for the gradient computation. For
the rest of this section we assume that d is even for simplicity of notation; a similar
decomposition exists for odd d by choosing “half-angles” (see [30] for more details).
We then choose the inner product defined by evaluation at 2d + 1 points on the circle,

1 24+l 2km
<p,(J> = m kZ::l p(l“k)Q(l‘k), T = 2d+1

Since a trigonometric polynomial of degree-d is uniquely defined by evaluation on
2d 4 1 unique points, ||p(x)||2 =0 if and only if p is identically zero.
Let U € RUUHDXT he a matrix with column U; representing the coefficients of
u;(x), and B € R(@+1)x(2d+1) 16 the evaluation map on 2d + 1 points with columns
Be=[1 cos(w) --- cos(dax) sin(wp) - sin(day)]
so that B] U; = u; (). Let p be the vector of coefficients of p(x), so that B p=p(z).
Then we can write

| 2l o )
fp(U):me:l (HU Byl —p(xk)) ;

4 TR TR |? T
VIu(U) = 57U T BDiag (U7 Bi*  plaw) BT,

where Diag (HUTB;CH2 —p(xk)> is a diagonal matrix with ||UTBk||2 — p(xy) as the
kth diagonal entry. Since matrix-vector multiplication by B is equivalent to a discrete
Fourier transform, V f,(U) can be computed in O(rdlogd) time using the FFT. The-
orem 1.1 shows that spurious local minima do not exist when r > 2, so we can pick
r to be a constant and obtain a near-linear iteration complexity. This is in contrast
to other SDP-based algorithms and custom interior point methods for solving this
problem, which run into computational difficulties even when 2d = 10,000.

We implemented our algorithm for finding the sum of squares decomposition of
trigonometric polynomials in Julia,” using the FFTW.jl [19] package for FFTs to
compute V f,(U) and the NLopt. j1 [25] package to minimize f,(U) using a first-order
algorithm (L-BFGS). We performed the timing experiments on Intel Xeon Platinum
8260 processors, allocating at least r + 1 cores to each run, using polynomials of
degree-2d ranging from 2,000 to 1,000,000. The test polynomials are generated with
coefficients drawn from a standard normal distribution, with a constant coefficient
added so that they all have a small positive minimum value. U is initialized with a
small random value; its magnitude depends on the size of the problem. The algorithm
is terminated when the relative error for each entry of U is on the order of 1077,
Although r = 2 is sufficient, the results in Table 1(b) shows that r = 4 minimizes
the total computational cost, as measured by the total number of FFT calls (by far

9The code and data required to reproduce the results in this section can be found in [28].
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Fi1G. 2. Value of fp(u) against iterations of L-BFGS for computing the sum of squares de-
composition of 20 random nonnegative trigonometric polynomials (2d = 100,000), showing a linear
convergence rate.

the most expensive operation) needed for convergence. In addition, since the matrix-
vector products can be easily parallelized across multiple threads, increasing r does
not incur a significant per-iteration cost if sufficient threads are used. Thus we choose
r =4 for our large-scale experiments in Table la. Figure 2 plots the convergence rate
of 20 instances, and we can see that they achieve a linear convergence rate. This is
in contrast to grid-based methods [41, 17] which scale sublinearly in accuracy.

8. Conclusion. When does it make sense to solve nonconvex formulations of
convex problems? In this paper we addressed this question for sum of squares de-
composition and optimization of univariate polynomials, showing that solving the
nonconvex formulation can provide a large computational speedup while still main-
taining provable guarantees on the convergence to the global optima. Key to our
approach is retaining polynomial structure in the nonconvex formulation. This en-
ables us to use algebraic methods to construct a certificate showing that all SOCPs
are global minima.

Our approach for finding sum of squares decompositions generalizes to multivari-
ate polynomials, although we do not have guarantees for the rank needed to exclude
spurious second-order critical points. On the other hand, results for low-rank matrix
factorization tell us that this rank is equal to the Pythagoras number for quadratic
forms. Thus we conjecture that a version of Theorem 1.1 is true for ternary quartics
and matrix polynomials, cases where nonnegativity is equivalent to the existence of a
sum of squares decomposition. Some similarities between our conditions and a new
characterization of theses cases in terms of varieties of minimal degree [6] also suggest
that Theorem 1.1 could be generalized to these cases. In particular, the case where
the syzygy module only contains the Koszul syzygies [16, p. 581] could generalize the
coprime case studied in subsection 4.1.

Another direction for future work is to apply our methods to other structured
semidefinite programs or polynomial-valued objectives such as symmetric tensor de-
composition.
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